

Global Journal of
Computer Sciences:

Theory and Research

Volume 8, Issue 1, (2018) 01-13
www.gjcs.eu

Performance analysis of software maintenance process using

stochastic Petri nets

Muhammad Nabeel, Department of Electrical and Computer Engineering, Centre for Advanced Studies in
Engineering, 19-Attaturk Avenue, G-5/1, 41000 Islamabad, Pakistan.

Zeeshan Anwar *, Department of Computer Software Engineering, National University of Sciences and

Technology, H-12, 41000 Islamabad, Pakistan.
Ali Ahsan, Foundation University, 41000 Islamabad, Pakistan.

Suggested Citation:

Nabeel, M., Anwar, Z. & Ahsan, A. (2018). Performance analysis of software maintenance process using
stochastic Petri nets. Global Journal of Computer Sciences: Theory and Research. 8(1), 01–13.

Received from September 15, 2017; revised from December 02, 2017; accepted from February, 22, 2018.
Selection and peer review under responsibility of Prof. Dr. Dogan Ibrahim, Near East University, Cyprus.
©

2018 SciencePark Research, Organization & Counseling. All rights reserved.

Abstract

Software maintenance is a time taking activi ty in the real world. Execution time of software maintenance process may get
increased due to interdepartmental communication, thus , increasing the cost and decreasing the performance of the

process. We suggested performance evaluation of software maintenance process through the transformation of activi ty
diagram into generalised s tochastic Petri nets (GSPN). For this s tudy, execution time and cost of maintenance process are
defined as performance measures , and the role-based approach is used to understand the flow of software maintenance

activi ties in a software organisation. Activi ty diagram is constructed to be transformed into GSPN. We used PIPE2 to analyse
the GSPN. PIPE2 calculates average number of tokens on a place in the GSPN, throughput of timed transition and state space
analysis. State space involves calculation of the reachability of the GSPN net that shows whether a GSPN holds the property

of safeness, boundness and is deadlock free .

Keywords: Generalised s tochastic Petri nets (GSPN), GSPN analysis, performance evaluation, performance modelling,

software maintenance process , s tochastic Petri nets .

* ADDRESS FOR CORRESPONDENCE: Zeeshan Anwar, Department of Computer Software Engineering, National University

of Sciences and Technology, H-12, 41000 Islamabad, Pakis tan. E-mail address: zeeshan.phdcse@stuents .mcs .edu.pk /
Tel .: +92-333-572-3230

http://www.gjcs.eu/
mailto:zeeshan.phdcse@stuents.mcs.edu.pk

Muhammad Nabeel, Zeeshan Anwar & Ali Ahsan (2018). Performance Analysis of Software Maintenance Process using Stochastic Petri Nets.
Global Journal of Computer Sciences: Theory and Research. 8(1), 01-13.

 2

1. Introduction

Software maintenance is a critical process which can lead towards success or prodigious business loss.
This paper focuses on the major issues being faced by the industry during the implementation and
execution of the software maintenance process. So far, many software practitioners have proposed
models to evaluate the performance of software maintenance process like software maintenance
process evaluation using discrete event simulation (Marsan, 1995), use of indices systems for evaluation
of software maintainability (Kim, Chung & Kim, 2005), RFD and CURE (Staines, 2010) maintenance
models. Performance measures that are used by most of the performance evaluation models are
complete cycle time (Kumar, 2012) of a particular activity in a process, workload (Bjorling & Hoff, 2002)
on individual resource or at team level in a process, throughput of a process (Artikson, 1997) and
communication paths (Warmer & Kleppe, 2003). Though all these models have their own significance, a
common limitation observed is that they require software maintenance process to be executed first.
This means after spending significant amount of time and money, a model is able to identify the
performance issues. This research is an attempt to propose a methodology in which performance can be
evaluated without executing the software maintenance process. This study will also be helpful in
identifying the bottlenecks in software maintenance process by figuring out whether the process
implementation will be safe and there will be no deadlocks in the implemented process. Another
significance of the study is that it uses automation tool PIPE2, which will help in automating the
performance evaluation process for software maintenance process activities. This will reduce the
overhead time being used in calculating the performance parameters for software maintenance process.

Rest of the paper is organised as follows: literature review is given in Section 2 and Section 3
discusses the various techniques used to transform software maintenance process into generalised
stochastic Petri nets (GSPN). In Section 4, a case study is given by transforming software maintenance
process of an organisation into GSPN. Analysis is performed in Section 5. Sections 6 and 7 conclude
and give future directions, respectively.

2. Literature Review

2.1. Software maintenance

Changes in software are required for bug fixing and improvements. Improvements are made to
include new or modified requirements, upgradation of modules or technology. Maintenance efforts are
required to cope with the above-mentioned problems and improvements (Hasan & Chakrborti, 2011).

IEEE (IEEE Std 1219–1998) formally defined software maintenance as ‘The totality of activities
required to provide cost-effective support to a software system. Activities are performed during the
pre-delivery stage as well as the post-delivery stage’.

Maintenance is further classified as adaptive, perfective, preventive, corrective and emergency
maintenance (Benestad, Anda & Arisholm, 2009; Chang & Hsiang, 2011; Chapin, 2000; Hasan &
Chakrborti, 2011; Hussian, Asghar, Ahmad & Ahmad, 2009; Schach, Jin, Yu, Heller & Offutt, 2003).

2.2. Petri nets

Petri nets are successful, because they use theoretical characteristics for precise modelling and
analysis of system behaviour. Also, state changes can be visualised through graphical representation
(Wang, 2007). Petri net is a type of bipartite directed graph (Murata, 1989) and comprises places,
directed arcs and transitions. Directed arcs can be used to connect transitions to places or to connect
places to transitions (ISO/IEC, 2010). Simplest Petri net which consists of input place P1, output place
P2 and one transition T1 is shown in Figure 1.

Muhammad Nabeel, Zeeshan Anwar & Ali Ahsan (2018). Performance Analysis of Software Maintenance Process using Stochastic Petri Nets.
Global Journal of Computer Sciences: Theory and Research. 8(1), 01-13.

 3

Figure 1. Basic Petri net

Properties of places and transitions can be found in (Mandrioli, Morzenti, Pietro & Silva, 1996) and
properties of Petri nets are given in Table 1.

Table 1. Modelling power in Petri nets (Genrich & Lautenbach, 1989; Li & Zhou, 2009;

Murata, 1989; http://en.wikipedia.org/wiki/Petri_net)

Petri net property Corresponding model

Sequential: When T0 fires, then T1 can be fired

Conflict: Two transitions T0 and T1 enabled due to token at

P0. Token is removed and remaining transition gets disabled
(T0 or T1) when either one transition fires

Concurrency: Activities in a process can have concurrent

behaviour. Transitions T1, T2 and T3 behave as concurrent
activities

Synchronisation: Petri nets have the power to model
synchronisation. P3 will starts only when P0, P1 and P2 get

finished

Confusion: Confusion state will arise when T1 fires and T0 is
still enabled. This is due to the enablement of all the
transitions (T0, T1 and T2)

Merging: In merging, parallel processes are merged , so

transition firing time could be different

Muhammad Nabeel, Zeeshan Anwar & Ali Ahsan (2018). Performance Analysis of Software Maintenance Process using Stochastic Petri Nets.
Global Journal of Computer Sciences: Theory and Research. 8(1), 01-13.

 4

2.3. Stochastic Petri nets

A stochastic process, also called random process, contains random variables that represent the
progression of system having random values over time (Emadi & Shams, 2009). Models developed by
using SPN allow proof of correctness, integration of formal description and performance evaluation
(Fagundes, Maciel & Rosa, 2007).

2.4. Basic model of stochastic Petri nets

An SPN is six-tuples, SPN = (P, T, I, O, M0, A) where (P, T, I, O, M0) is the marked untimed PN
underlying SPN. A = (ʎ1, ʎ2, …, ʎn) is an array (possibly marking dependent) which consists of firing
rates allied with transitions. In stochastic Petri nets, transition firing holds the condition of atomicity
i.e. with one indivisible operation tokens from input places are removed and deposited into output
places (Marsan, 1990). Each transition is linked with a firing delay. Firing delay is the amount of time
to which transition must hold itself before firing. The firing delay is classified as random variable with
negative exponential probability density function (pdf; Miwa, Li, Ge, Matsuno & Miyano, 2011). The
parameter of the pdf (according to probability theory, when the probability distribution is defined as a
function over general sets of values, then pdf is used) associated with transition ti is the firing rate
associated with ti and Xi. The average firing delay of transition ti in marking Mj is [Xi(Mj)] − 1.

2.5. Performance evaluation of process

Cost and time are indicators used to measure process performance (Cao & Hoffman, 2011). The
performance objectives are to be defined as they play important role in performance evaluation of a
process. Performance objectives help in stickiness towards acceptable and focused solution of process
execution. Performance objectives guide to what extent efforts should be made in smooth execution
of process (Jung & Goldenson, 2009). When process performance evaluation is desired, then
considerable substances are number of employees required in order to execute a process, available
resource pool (skill set level), collaboration time cycle with associated departments, time required
for research and development and change in time cycle due to process variation (Cao & Hoffman,
2011; Kumar, 2012; Stoddard, 2007; Stoddard & Goldenson, 2010; Tan, Shen & Zhao, 2007;
http://www.omg.org/technology/documents/formal/uml.htm).

2.6. Software maintenance process evaluation using discrete event simulation

Due to multiple response loops (interdepartmental and client communication) and complex cause –
effect bindings, it becomes difficult to analyse the performance of software maintenance process. The
above discussed problems of complexity have been coped with simulation power, as simulation can
give deeper insight into process activities and impact change on performance of process without
actually implementing the process in the real environment.

Modification requests change their states and uniqueness due to occurrence of discrete events in a
software maintenance process. State of a modification request can be modelled in order to study the
behaviour changes of a modification request. The simulation model represents software maintenance
process as decision tree, which will serve as input description, in order to study the system.

3. Techniques for Activities Transformation into SPN

Adel Ouardani, Esteban, Paludetto and Pascal (2006) uses requirements validation process in order
to transform UML diagrams into Petri nets (Merseguer, 2003; Rungworawut & Senivongse, 2005).
UML activity diagrams (Staines, 2010) are considered important as they are easy and provide powerful
visual modelling techniques, which describe number of behaviour found in information and computer

Muhammad Nabeel, Zeeshan Anwar & Ali Ahsan (2018). Performance Analysis of Software Maintenance Process using Stochastic Petri Nets.
Global Journal of Computer Sciences: Theory and Research. 8(1), 01-13.

 5

systems (Canevet, Gilmore, Hilliston, Kloul & Stevens, 2004; http://www.omg.org/technology/
documents/formal/uml.htm). In practical, activity model can be used but not limited to: web service
composition, web processing, system integration, business process modelling, task management and
software operation tasks modelling (Rungworawut & Senivongse, 2005). Modelling with GSPN is
explained in (Marsan, Balbo, Conte, Donatelli & Franceschinis, 1994) and also, uses case diagrams that
can have transformed into Petri nets.

Performance models are being considered for performance measurement as discussed in
(Merseguer, 2003). Activity diagrams can be used for performance evaluation (Lopez-Grao, Merseguer
& Campos, 2004). Merseguer (Motameni, Movaghar & Amiri, 2007) consider non-functional
parameters of a software system and uses UML activity diagrams to obtain Petri net model with focus
on performance and reliability. In order to analyse the stochastic behaviour of the system,
performance parameters are obtained from GSPN model (Motameni, Movaghar & Mozafari, 2005).
GSPN model is then used to derive embedded continuous-time Markov chain (Motameni, Montazeri,
Siasifar, Movaghar & Zandakbari, 2007).

Three main reasons were involved for using Petri nets for capturing object-oriented behavioural
design. The first reason is concurrency, synchronisation and resource sharing behaviour of a system
that can be modelled using Petri net. Second, issues related to deadlock and performance analysis can
be analysed using numerical results. Finally, automation of behavioural analysis can be achieved
through integration of Petri nets and object-oriented design. UML diagrams are powerful tool for
system design but they are unable to address non-functional parameters. This means UML diagrams
cannot be used for performance evaluation, so in order to solve this problem UML diagrams were
translated into GSPN (Marsan, 1995; Merseguer, LopezGrao & Campos, 2004). Overall process for
transformation of activity diagrams into GSPN for performance evaluation is given in Figure 2.

Figure 2. Transformation process from activity diagrams into GSPN

Muhammad Nabeel, Zeeshan Anwar & Ali Ahsan (2018). Performance Analysis of Software Maintenance Process using Stochastic Petri Nets.
Global Journal of Computer Sciences: Theory and Research. 8(1), 01-13.

 6

4. Case Study

4.1. Organisation introduction

An organisation which is working on client communication management, team collaboration and
content management solutions and having clients in more than 30 countries was chosen. Due to
diverse culture, changing business needs and rapid change in technology, organisation faces immense
challenges in maintenance of the products. Maintenance of such mission critical software required
that there should be a software maintenance process which is cost effective and less time consuming.
Much of the time is wasted due to lack of timely communication between different departments
within the organisation and also communication to client for clarification of requirements.

Roles and responsibilities involved in software maintenance process are presented in form of
activity diagram given in Appendix A. Same activity diagram is used for case study execution. Following
section presents mapping of software maintenance process into GSPN and their corresponding
analysis using PIPE2.

4.2. Mapping of MR/PR analysis into GSPN

Figure 3 presents the mapping of MR/PR analysis into GSPN.

Figure 3. Mapping of MR/PR analysis into GSPN

Muhammad Nabeel, Zeeshan Anwar & Ali Ahsan (2018). Performance Analysis of Software Maintenance Process using Stochastic Petri Nets.
Global Journal of Computer Sciences: Theory and Research. 8(1), 01-13.

 7

4.3. GSPN of modification implementation

Figure 4 presents the mapping of modification implementation into GSPN.

Figure 4. Mapping of modification implementation into GSPN

4.4. GSPN of maintenance review and acceptance

Figure 5 presents the mapping of maintenance review and acceptance into GSPN.

Figure 5. Mapping of maintenance review and acceptance into GSPN

Muhammad Nabeel, Zeeshan Anwar & Ali Ahsan (2018). Performance Analysis of Software Maintenance Process using Stochastic Petri Nets.
Global Journal of Computer Sciences: Theory and Research. 8(1), 01-13.

 8

5. Analysis of Results

GSPN analysis is presented in Figure 6 on the results taken from experiments performed using
PIPE2.

Figure 6. GSPN analysis of MR/PR analysis, modification implementation and MR/PR review and acceptance

Muhammad Nabeel, Zeeshan Anwar & Ali Ahsan (2018). Performance Analysis of Software Maintenance Process using Stochastic Petri Nets.
Global Journal of Computer Sciences: Theory and Research. 8(1), 01-13.

 9

For every GSPN presented in the Figures 3–5, PIPE2 calculates the performance measures like
average number of tokens on place, probability density of token, timed transitions with throughput,
minimal siphons and minimal traps, steady space analysis and Petri net simulation results. Tokens are
used to study the dynamic actions of a system modelled using Petri net in view of system’s states and
states changes. A place can hold none or positive numeral of tokens. Condition allied with a place can
either be false or true and can be determined by presence or absence of a token in that place. These
distributions of tokens are used in understanding the behaviour of the process and contribute towards
structural analysis of Petri net, which will show whether a Petri net is safe, bounded or deadlock free.
Steady space analysis for GSPN of MR/PR analysis, modification implementation and MR/PR review
and acceptance show that nets are bounded, safe and deadlock Free.

6. Research Findings

It is possible to perform performance evaluation of software maintenance process using GSPN.
Time and cost can be used as measures for performance evaluation. In this study, only time is used as
measure for performance evaluation, time determines the delay in activities. By this approach,
bottlenecks in the process can be identified and changes are proposed to improve maintenance
process. Software maintenance process was mapped into GSPN and performance evaluation was
simulated in an automated tool PIPE2.

Reachability Graph is calculated in order to satisfy the structural properties of created GSPNs for
maintenance process. Reachability graph is used in order to answer whether the constructed GSPN is
holding safety property which ensured that net is feasible for performance evaluation. Through the
calculation of reachability graph, it shown that constructed nets are deadlock free which means
software maintenance process has no dead ends and customer request is not stuck at any stage.

Time measures are mentioned in Table 2 in the form of analysis time for MR/PR analysis,
modification implementation and MR/PR review and acceptance.

Measures mentioned in Figure 6 in form of timed transitions can be combined with time measures
of analysis time in order to calculate the cost spent in software maintenance process. This calculated
cost can be compared to other cost calculating models in order to validate the effectiveness of current
stated methodology of performance evaluation for the under consideration process.

Table 2. State space exploration
GSPN State space exploration

time (seconds)

Steady state distribution

time (seconds)

Total time

(seconds)

MR/PR analysis 2.91 2.91 2.91
Modification implementation 0.415 0.415 0.415

MR/PR review and acceptance 0.075 0.075 0.075

7. Conclusion

This research proposed a new technique which is powerful and can be represented graphi cally for
the performance evaluation of software maintenance process, i.e. GSPN. Through PIPE2 token,
probability density, place holding average number of tokens and throughput of timed transitions have
been calculated for GSPN of MR/PR analysis, modification implementation and MR/PR review and
acceptance. State space analysis for each particular GSPN has been performed and results show that
each GSPN has satisfied the properties of: boundness, safeness and deadlock free. Time taken in state
space exploration, time taken in solving the steady state distribution and total time taken by activities
have also been calculated through PIPE2.

Muhammad Nabeel, Zeeshan Anwar & Ali Ahsan (2018). Performance Analysis of Software Maintenance Process using Stochastic Petri Nets.
Global Journal of Computer Sciences: Theory and Research. 8(1), 01-13.

 10

8. Future Work

In our future work, we are planning to use other techniques like use case, collaboration and
workflow diagrams for performance evaluation of maintenance process. Furthermore, performance
evaluation of software maintenance process using Performance Query Editor module available in
PIPE2 can also be utilised.

References

Artikson, C. (1997). Meta-modeling for distributed object environments. In IEEE enterprise distributed object
computing workshop (pp. 90–101).

Benestad, H. C., Anda, B. & Arisholm, E. (2009). Understanding software maintenance and evolution by analyzing

individual changes: A literature review. Journal of Software Maintenance and Evolution: Research and
Practice, 21, 349–378.

Bjorling, E. & Hoff, A. (2002). An evaluation of a maintenance model: A comparison with theory and results from

case studies (Unpublished Master’s thesis). Department of Software Engineering and Computer Science,
Blekinge Institute of Technology, Karlskrona, Sweden.

Canevet, C., Gilmore, S., Hilliston, J., Kloul, L. & Stevens, P. (2004). Analysing UML 2.0 activity diagrams in the
software engineering performance process. Redwood, CA: ACM.

Cao, Q. & Hoffman, J. J. (2011). A case study approach for developing a project performance evaluation system.
International Journal of Project Management, 29(2), 155–164.

Chang, C. K. & Hsiang, C. L. (2011). Using generalized stochastic Petri nets for preventive maintenance optimization
in automated manufacturing systems. Journal of Quality, 18(2), 117–135.

Chapin, N. (2000). Software maintenance types —a fresh view. In Proceedings of the international conference on
software maintenance (ICSM’2000) (pp. 247–252).

Emadi, S. & Shams, F. (2009). Transformation of use case and sequence diagrams into Petri nets. Computing,

Communication, Control, and Management, 4 , 399–403.
Fagundes, R. A. A., Maciel, P. R. M. & Rosa, S. (2007). Performance evaluation of CORBA concurrency control

service using stochastic Petri nets. RITA, 14(2), 109–132.
Genrich, J. H. & Lautenbach, K. (1989). System modeling with high-level Petri nets. Theoretical Computer Science,

3(1), 109–136.
Hasan, R. & Chakrborti, S. (2011). Investigating software maintenance challenges in small organizations. Americas

Conference on Information Systems, 17, 1–9.
Hussian, S., Asghar, M. Z., Ahmad, B. & Ahmad, S. (2009). A step towards software corrective maintenance: Using

RCM model. International Journal of Computer Science and Information Security, 4 (1 & 2), 25-36.
IEEE Std 1219–1998. IEEE standard for software maintenance. Revision of IEEE Std. 1219–1992, Approved 25 June

1998, ISBN 0-7381-0336-5.

ISO/IEC. (2010). ISO/IEC 15909-1:2004/Amd.1:2010(en) systems and software engineering—High-level Petri
nets—Part 1: Concepts, definitions and graphical notation AMENDMENT 1: Symmetric nets . Retrieved from
https://www.iso.org

Jung, H. W. & Goldenson, D. R. (2009). Evaluating the relationship between process improvement and schedule

deviation in software maintenance. Information and Software Technology, 51(2), 351–336.
Kim, G., Chung, W. & Kim, M. (2005). A selection framework of multiple navigation primitives using generalized

stochastic Petri nets. In Proceedings of the IEEE international conference on robotics and automation (ICRA)

(pp. 3790–3795).
Kumar, B. (2012). A survey of key factors affecting software maintainability. In International Conference on

Computing Sciences (pp. 261–266).
Li, Z. & Zhou, M. (2009). Deadlock resolution in automated manufacturing systems—A novel Petri net approach.

London, UK: Springer-Verlag.

https://www.iso.org/

Muhammad Nabeel, Zeeshan Anwar & Ali Ahsan (2018). Performance Analysis of Software Maintenance Process using Stochastic Petri Nets.
Global Journal of Computer Sciences: Theory and Research. 8(1), 01-13.

 11

Lopez-Grao, J. P., Merseguer, J. & Campos, J. (2004). From UML activity diagrams to stochastic Petri nets:
Application to software performance engineering. Proceedings of the 4th International Workshop on Software
and Performance, 29(1), 25–36.

Mandrioli, D., Morzenti, A., Pietro, S. & Silva, S. (1996). A Petri net and logic approach to the specification and

verification of real time systems. Hoboken, NJ: John Wiley & Sons. R
Marsan, M. A. (1990). Stochastic Petri nets: An elementary introduction. Lecture Notes in Computer Science, 424,

1–29.
Marsan, M. A. (1995). Modelling with generalized stochastic Petri nets. John Wiley Series in Parallel Computing

Chichester. Chichester, UK: John Wiley & Sons.
Marsan, M. A., Balbo, G., Conte, G., Donatelli , S. & Franceschinis , G. (1994). Modelling with generalized stochastic

Petri nets (1st ed.). New York, NY: John Wiley & Sons.

Merseguer, J. (2003). Software performance engineering based on UML and Petri nets (Unpublished Ph.D. thesis).
Departamento de Informatica e Ingenieria de Sistemas, Universidad de Zaragoza, Zaragoza, Spain.

Merseguer, J., LopezGrao, J. P. & Campos, J. (2004). From UML activity diagrams to stochastic Petri nets:
Application to Software Performance Engineering. ACM WOSP 04, 29(1), 25–36.

Miwa, Y., Li, C., Ge, Q. W., Matsuno, H. & Miyano, S. (2011). On determining firing delay time of transitions for Petri
net based signalling pathways by introducing stochastic decision rules. Studies in Health Technology and
Informatics, 162, 204–221.

Motameni, H., Movaghar, A. & Amiri, M. F. (2007). Mapping activity diagram to Petri net: Application of Markov
theory foranalyzing non-functional parameters. International Journal of Engineering Transactions, 20 (1), 65–
76.

Motameni, H., Movaghar, A. & Mozafari, M. (2005). Evaluating UML state diagrams using colored Petri net. In

Proceeding of SYNASC’05, Romania (pp. 87–108).
Motameni, H., Montazeri, H., Siasifar, M., Movaghar, A. & Zandakbari, M. (2007). Mapping state diagram to

Petri net: An approach to use Markov theory for analyzing non-functional parameters from state diagram. In K.
Elleithy (Ed.), Advances and innovations in systems, computing sciences and software engineering

(pp. 185–190). Dordrecht, The Netherlands: Springer.
Murata, T. (1989). Petri nets: Properties, analysis and applications. Proceedings of the IEEE, 77(4), 541–580.
Ouardani, A., Esteban, P., Paludetto, M. & Pascal, J. C. (2006). A meta -modeling approach for sequence diagrams to

Petri nets transformation within the requirements validation process. In Proceedings of the 20th European
simulation and modeling conference (pp. 1–10).

Rungworawut, W. & Senivongse, T. (2005). A guideline to mapping business processes to UML class diagrams.
WSEAS Transactions on Computers, 4(11), 1526–1533.

Schach, S. R., Jin, B., Yu, L., Heller, G. Z. & Offutt, J. (2003). Determining the distri bution of maintenance categories:
Survey versus measurement. Empirical Software Engineering, 8(4), 351–365.

Staines, A. S. (2010). A triple graph grammar mapping of UML 2 activities into Petri nets. In SEPADS’10 proceedings
of the 9th WSEAS international conference on Software engineering, parallel and distributed systems

(pp. 90–95). Retrieved from http://dl.acm.org/
Stoddard, R. W. (2007). CMMI process performance models and reliability. Retrieved from

http://paris.utdallas.edu/IEEE-RS-ATR/document/2007/2007-14.pdf

Stoddard, R. W. & Goldenson, D. R. (2010). Approaches to process performance modelling. In A summary from
the SEI series of workshops on CMMI high maturity measurement and analysis technical report, CMU/
SEI-2009-TR-021, ESC-TR-2009-021 (pp. 1–106). Retrieved from http://repository.cmu.edu/

Tan, W. A., Shen, W. & Zhao, J. (2007). A methodology for dynamic enterprise process performance evaluation.

Computers in Industry, 58(5), 474–485.
Wang, J. (2007). Petri nets for dynamic event-driven system modeling. In P. Fishwick (Ed.), Handbook of dynamic

system modelling. Boca Raton, FL: Chapman & Hall.

Warmer, J. B. & Kleppe, A. J. (2003). The object constraint language second edition: Getting your models for MDA .
Boston, MA: Addison-Wesley.

http://dl.acm.org/
http://paris.utdallas.edu/IEEE-RS-ATR/document/2007/2007-14.pdf
http://repository.cmu.edu/

Muhammad Nabeel, Zeeshan Anwar & Ali Ahsan (2018). Performance Analysis of Software Maintenance Process using Stochastic Petri Nets.
Global Journal of Computer Sciences: Theory and Research. 8(1), 01-13.

 12

Appendix A

OMG UML 2 superstructure specification. V2.2, OMG. Retrieved from http://www.omg.org/technology/
documents/formal/uml.htm
Activity diagram for Software Maintenance Process of Alpha Technologies

Muhammad Nabeel, Zeeshan Anwar & Ali Ahsan (2018). Performance Analysis of Software Maintenance Process using Stochastic Petri Nets.
Global Journal of Computer Sciences: Theory and Research. 8(1), 01-13.

 13

Figure 7. Activity diagram for software maintenance process

