
 Global Journal of 

Computer Sciences: 

Theory and Research 

 

 Volume 8, Issue 3, (2018) 132-135  

www.gjcs.eu 

 
Developing java design patterns modeller with  

object-oriented programming 
 

Egemen Tekkanat*, Kesan Yusuf Capraz Applied School, Trakya University, 22800, Edirne, Turkey 
Murat Topaloglu, Kesan Yusuf Capraz Applied School, Trakya University, 22800, Edirne, Turkey 
 

Suggested Citation: 
Tekkanat, E. & Topaloglu, M. (2018). Developing java design patterns modeller with object-oriented 

programming. Global Journal of Computer Sciences: Theory and Research. 8(3), 132–135.  
 

Received from March 1, 2018; revised from July 23, 2018; accepted from November 22, 2018. 
Selection and peer review under responsibility of Prof. Dr. Dogan Ibrahim, Near East University, Cyprus. 
©2018 SciencePark Research, Organization & Counseling. All rights reserved. 

 
Abstract 

 
Planning is a very important stage for developing software. A number of systems have been developed for the planning 
stage, which is a must for software development. Object-oriented programming plays the most important part technically in 
those systems. Using object-based programming effectively minimises the time and money spent in terms of software 
development processes. One of the best ways for this is to use design patterns that are also known as modules or program 
segments consisting of more than one classes and supporting code reuse in order to solve the problems recurring during the 
development of the software. The aim of this study is to develop a design patterns modeller to be used in Java programming 
language to make the software development a planned, secure and upgradable process while shortening the time spent and 
reducing the costs via good planning. 

 
Keywords: Java, object-oriented, design patterns, modelling. 
  

                                                           
* ADDRESS FOR CORRESPONDENCE: Egemen Tekkanat, Kesan Yusuf Capraz Applied School, Trakya University, 22800, Edirne, 
Turkey. E-mail address: egementekkkanat@trakya.edu.tr / Tel.: +90-533-576-5806 

http://www.gjcs.eu/
mailto:egementekkkanat@trakya.edu.tr%20/


Tekkanat, E. & Topaloglu, M. (2018). Developing java design patterns modeller with object-oriented programming. Global Journal of 
Computer Sciences: Theory and Research. 8(3), 132-135. 

 

133 

1. Introduction 

Design patterns are quite important in the field of software engineering and every design model 
deals with recurring problems (Ayata, 2010). Design patterns explain the relationships between the 
categories and objects in object-based programming (Ozbek, Ince, Turhan & Onder, 2014). Design 
patterns are methods that offer flexible, extendible and reusable solutions for the problems 
encountered during the development of software and they explain how to solve these problems in 
those situations (http://www.tasarimdesenleri.com/core/home.jsp, 2015). Moreover, design patterns 
increase maintainability, reusability and understandability of the system (Gamma, Helm, Johnson & 
Vlissides, 1994). Design patterns support the principle that is called Open-Close. This principle states 
that software should be open for extension and closed for modification (Meyer, 1988). 

With increasing costs of projects in the field of informatics, the term ‘quality‘ has become the main 
focus of most studies (Erdemir, Tekin & Buzluca, 2008). It is a recognised fact that software with high 
quality should also have high compatibility while being less complicated and dependent on others 
(Booch, 1991). Complexity is one of the basic problems that is associated with software development 
tools and methods (Khan & Khan, 2012). 

There are lots of studies to examine the use of design patterns. Ali Bugdayci, in his master’s thesis 
titled, ‘Automated refactoring of design pattern implementations to aspect-oriented counterparts’, 
concentrated the design patterns and image processing studies (Bugdayci, 2007). In addition, Kasim 
Sinan Yildirim, in his master’s thesis titled ‘Design of an object-oriented and real-time microkernel for 
embedded systems using design patterns’ showed that design patterns can also be used in 
systematical works (Yildirim, 2006). The aim of this study is to gain more successful results during 
software development by making use of Java design templates. 

OOP is a software programming model that uses objects which include the data and methods to 
create the behaviour expected from the software (Basaraner & Selcuk, 2007). IEEE defines OOP as a 
programming language model in which a system or software module is represented with objects and 
the links between these objects (IEEE Computer Society, 1983). The basic concepts of OOP are the 
abstraction, storage and class hierarchies that make developing, modifying and protecting big 
software easier and help us extend the programs with ease (Booch, 2006). 

In today’s computer world, many of the leading software companies have been supporting Java 
environment directly or indirectly with increasing amounts day by day (Inceoglu, 2004). Java platform 
has three different editions which are Java Micro Edition-JME (Gamma et al., 1994) for mobile phones, 
other hand and embedded devices, Java Standard Edition-JSE (Ozbek et al., 2014) and Java Enterprise 
Edition-JEE (Ayata, 2010; http://www.java.sun.com, 2015). In addition, Java programming language 
supports applet structures to run the written programs on the Internet (Inceoglu, 2004). 

2. Materials and method 

MVC and UML (Unified Modeling Language) templates were used for the development of the 
design template modeller application. UML is used for specification, visualisation and documentation 
of the units of the object-oriented systems that are being developed (Kurnaz, Cetin & Ince, 2003). UML 
class diagrams include four basic elements (Onel, Komesli & Okur, 2014), which are classes, 
relationships, object instances and packages (Zhang, Peng, Zhao & Li, 2008). 

2.1. The development of the java design template modeler application 

The application was developed in Java programming language. When the application runs, the files 
to be given will be in Java class format. 

The aim of this study is to help the software developers integrate the available design templates 
into their future projects more comfortably. The software developer can select the template s/he 



Tekkanat, E. & Topaloglu, M. (2018). Developing java design patterns modeller with object-oriented programming. Global Journal of 
Computer Sciences: Theory and Research. 8(3), 132-135. 

 

134 

wants to process. Then, the developer designs the empty template selected in the code panel in the 
application screen to build it into the application. 

The application interface also includes a section for template information, which provides details 
for the templates. There is a panel in the application to show the templates that we added to our 
project.  

There are two options in the Template Selection component of the application which are 
architectural templates and design templates. 

The architectural templates have three options which are single-layered architecture, three-layer 
architecture and MVC architecture. When one of these options is selected, the related design code is 
added under the presentation, Business and Data layer in the code view section. These codes are 
created by the application in compliance with the selected architectural template. Template 
Information section gives a brief definition of the template that is selected.  

Design Template includes 12 separate design templates, which are abstract factory, adapter, bridge, 
builder, composite, decorator, facade, factory method, flyweight, prototype and singleton. As in the 
architectural template, these templates have the presentation, Business and Data layers. When ‘add 
selected template’ button is clicked, the codes for the templates are created by the application. In 
addition to that, an information screen opens when ‘view template information’ is clicked.  

3. Conclusion 

Software of high quality means applications that work more productively, faster and fulfil your 
needs best. Thus, the higher the quality is, the higher the costs will be. Thanks to this application, the 
possible errors during runtime will be minimised using design templates for the design of the 
software, which will also save both time and money. 

In order to make design templates more attractive, architectural roof-architectural template 
system, which is not covered within the design templates as a topic, can be included in the application. 

The aim of this application is to extend the use of design templates while saving time, money and 
other resources. The application has a structure that is upgradeable, customisable and flexible at the 
same time. Finally, it is hoped that this application will contribute to the use of design templates more 
frequently in the field. 
 

 

References 
 

Ayata, M. (2010). Effect of some software design patterns on real time software performance (MSc Thesis). 
Ankara, Turkey: Middle East Technical University. 

Basaraner, M. & Selcuk, M. (2007). Cok Ajanli Sistemler ve Kartografik Genellestirme. Tmmob Harita ve Kadastro 
Muhendisleri Odasi, 11, 2–6. 

Bugdayci, A. (2007). Automated refactoring of design pattern implementations to aspect oriented counterparts 
(MSc Thesis). Ankara, Turkey: Middle East Technical University. 

Booch, G. (1991). Object oriented design with applications. Redwood City, CA. 
Booch, G. (2006). Object oriented analysis & design with application. India: Pearson Education India. 
Erdemir, U., Tekin, U. & Buzluca, F. (2008). Object oriented software metrics and software quality. Yazilim Kalitesi 

ve Yazilim Gelistirme Araclari Sempozyumu. 
Gamma, E., Helm, R., Johnson, R. & Vlissides, J. (1994). Design patterns: elements of reusable object-oriented 

software. Pearson Education. 
http://www.tasarimdesenleri.com/core/home.jsp(2015). Retrieved May 20, 2015 

http://www.tasarimdesenleri.com/core/home.jsp   
http://www.java.sun.com. (2015). Retrieved May 20, 2015 http://www.java.sun.com  

http://www.tasarimdesenleri.com/core/home.jsp
http://www.tasarimdesenleri.com/core/home.jsp
http://www.java.sun.com/


Tekkanat, E. & Topaloglu, M. (2018). Developing java design patterns modeller with object-oriented programming. Global Journal of 
Computer Sciences: Theory and Research. 8(3), 132-135. 

 

135 

Inceoglu, M. M. (2004). BOTE ogrencilerinin java programlama dili ogretimi konusundaki gorusleri. Malatya 
Turkey: XIII. Ulusal Egitim Bilimleri Kurultayi. 

IEEE Computer Society. (1983). Software engineering technical committee, IEEE standard glossary of software 
engineering terminology, Institute of Electrical and Electronics Engineers. 

Khan, S. A. & Khan, R. A. (2012). Object oriented design complexity quantification model. Procedia Technology, 4, 
548–554. 

Kurnaz, S., Cetin, O. & Ince, F. (2003). Yazilim muhendisliginde kalite ve uml. Havacilik ve Uzay Teknolojileri 
Dergisi, 1(2), 1–12. 

Meyer, B. (1988). Object-oriented software construction (vol 2, pp. 331–410), New York, NY: Prentice hall. 
Ozbek, F., Ince, M., Turhan, M., & Onder, H. H. (2014). E-universite icin esnek bir framework gelistirilmesi ve 

uygulanmasi, Akademik Bilisim, Mersin Universitesi. 
Onel, S., Komesli, M. & Okur, M. C. (2014). UML ile modellenen cografi verilerin XSLT yardimiyla OWL’a 

donusturulmesi, In: Proceedings of the 8th Turkish National Software Engineering Symposium (UYMS-
2014), Guzelyurt, Turkey. 

Yildirim, K. (2006). Design of an object oriented and real-time microkernel for embedded systems using design 
patterns (MSc Thesis). Izmir, Turkey: Ege University. 

Zhang, C., Peng, Z. R., Zhao, T. & Li, W. (2008). Transformation of transportation data models from unified 
modeling language to web ontology language, Transportation Research Record: Journal of the 
Transportation Research Board, 2064(1), 81–89. 


