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Abstract 
 

The increasing phenomenon of information overload is a direct result of the ongoing trend to reduce the cost of data. This 
study investigated the effect of the previously developed random mixed crossover (RMC), back controlled selection (BCSO), 
double directions sensitive mutation operators (DDSM), and backward controlled termination criteria (BCTC) on the 
performance of a genetic algorithm (GA). In the first study, the following three benchmark 0-1, bounded, and unbounded 
knapsack problems problems were analyzed. In the first stage, the existing were applied to the benchmark problems. In the 
second stage of the study, the analysis was conducted by separately applying the previously developed operators, RMC, 
BCSO, DDSM, and BCTC to the same benchmark problems. In the third stage of the study, the previously developed RMC, 
BCSO DDSM operators, and BCTC were applied to the same benchmark problems in the same analysis, and the results were 
compared with those obtained from the first stage. The results of the analysis showed that when the developed operators 
(crossover, selection, and mutation) and termination criteria were collectively used, they were more successful than the 
existing operators and the developed operators that were separately applied to the benchmark problems. 
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1. INTRODUCTION 

In the literature, there are a substantial number of studies on Genetic Algorithms (GAs), 
investigating the effect of different GA operators, particularly crossover, selection, and mutation 
operators and termination criteria, on the performance of GAs. Examples of these studies are given 
below. 

Fairbairn et al. [1] suggested a procedure to optimize the construction of mass concrete 
structures using GAs. Castilho et al [2] described the use of a modified GA as an optimization operator 
in structural engineering to minimize the production costs of slabs using precast pre-stressed concrete 
joists. Govindaraj and Ramasamy [3]. presented an application of GAs for the optimum detailed design 
of reinforced concrete continuous beams based on Indian Standard specifications. Atabay [4] 
investigated the cost optimization of an r/c structural system using a GA operator. Rafiq and 
Southcombe [5] introduced a new approach to the optimal design and detailing of reinforced concrete 
biaxial columns using GAs. Coello et al [6] presented an operator to optimize the design of reinforced 
concrete beams subject to a specified set of constraints. Sahab et al [7] examined the cost 
optimization of reinforced concrete flat slab buildings, according to the British Code of Practice 
(BS8110).  

Atabay and Gülay [8] investigated the cost optimization of the three-dimensional shear-wall 
reinforced concrete structure using a GA operator. Bagui & Stanley [9] researched concept drift using 
frequent itemsets for mining streaming data using a genetic algorithm. Brighenti [10] researched the 
optimal distribution of fibers in fiber-reinforced composites (FRC) using a GA. Qin et al., [11] 
researched the use of a genetic algorithm to explore the optimization method of transmission line 
planning in energy distribution. Huang et al., [12] researched an Automatic design system of optimal 
sunlight-guiding micro prism based on a genetic algorithm. Ansary and Nassef [13] proposed a 
nonlinear finite element model and a GA optimization technique developed specifically for the 
analysis and design of steel conical tanks. Mota et al. [14], Motuzienė et al. [15], and Elgohary et al. 
[16] researched using genetic algorithms to enhance intelligent energy management systems in 
designing buildings. Maheri et al [17] recommended that the topology optimization of steel braces in 
two-dimensional steel frames was carried out using a GA. Kradinov and Madenci [18] analyzed the 
design variables of; laminate thickness, laminate lay-up, bolt location, bolt flexibility, and bolt size. 
Mezzommo et al [19] recommended the best alternatives for trapezoidal-shaped cross-sections of 
steel sheets, subjected to bending moments.  

Jenkins, Rajeev, and Krishnamoorty [20-23]. investigated the effect of crossover operators on the 
behavior of GAs and found that the crossover operator is as important as coding, selection, and 
mutation in GAs. Adeli and Cheng [24-26] applied dimension optimization problems to three trusses, 
and beams to numerically compare one-point, two-point, and uniform crossover operators and 
obtained the best result from the two-point crossover operator. Wu and Chow [27] compared the 
one-point, two-point, three-point, and four-point crossover operators and showed that two-point, 
three-point, and four-point crossover operators are better than the one-point crossover. Jenkins [28] 
argued that the multi-point crossover operator fastened the progress whereas the use of a single-
point crossover slowed it down. Syswerda [29] showed that the uniform crossover operator is more 
efficient when compared with two-point crossover. Erbatur and Hasancebi [30] proposed a new mixed 
and direct design variable exchange crossover operator in their study to investigate the effect of 
crossover operators on the behavior of GAs. Stern et al. [31] compared three popular selection 
operators; proportional selection, ranking selection, and tournament selection.  

https://www.sciencedirect.com/topics/engineering/genetic-algorithm
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1.1. Purpose of study 

In the current study, the following four benchmark problems were analyzed namely; high 
strength concrete mix design, traveling salesman, 0-1, and bounded knapsack problems. In the first 
stage; existing operators namely; the multi-point crossover operator and tournament selection 
operator, 1% mutation ratio, and fitness convergence termination criteria were applied to the 
problems. 

In the second stage of the study, previously developed operators, randomly mixed crossover 
(RMC), back controlled selection (BCSO), double directions sensitive mutation operators (DDSM), and 
backward controlled termination criteria (BCTC) were applied to the benchmark problems conducting 
a separate analysis for each criterion, and the results obtained from this stage were compared with 
those obtained from the first stage. 

In the third stage of the study, previously developed RMC, BCSO, DDSM, and BCTC were applied 
to the same benchmark problems conducting only one analysis, and the results obtained from this 
stage were compared with those obtained from the first and second stages. 

2. METHODS AND MATERIALS 

2.1. Population 

     A GA realizes the search within a population formed by points. When this population is being 
formed, ensuring the dissimilarity of the individuals is important; thus, the individuals should be 
formed randomly. In this study, the initial population consisted of 100 dissimilar individuals. 

2.2.  Coding 

     For the high-strength concrete mix design, reinforced concrete beam, and bounded knapsack 
problems, a permutation coding type was used since the design variables consisted of more than one 
variable group. For the 0-1 knapsack problem, a binary coding type was chosen and the variables were 
changed to 0 or 1. 

2.3. Evaluation 

     A GA finds the maximum of an unconstrained objective function. To solve a constrained objective 
minimization function, two transformations are needed in this operator; transforming the original 
objective constrained function into an unconstrained objective function using the concept of the 
penalty function and transforming the unconstrained objective function into the fitness function. In 
this study, different constrained objective functions occurred for the four problems. After these 
functions occurred, this function was transformed into the unconstrained objective function. Finally, 
the unconstrained objective function was transformed into the fitness function. 

2.4. Selection operator 

    Individuals of new populations in each generation were selected from the individuals of the existing 
population using a selection operator after creating the initial population. This operator artificially 
performed the natural selection. In this study previously developed back-controlled selection operator 
was applied to the problems [32]. 

2.5. Crossover operator 

   A GA can rapidly identify discrete zones within a large search space area to concentrate the search 
for an optimum solution. This technique changes mutually defined parts of the two selected members 
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and obtains different members that produce new points in the search space. In this study previously 
developed random mixed crossover operator was applied to the problems [33]. 

2.6. Mutation operator 

    When examining a limited population, some of the genetic information will likely be lost over time. 
In the later generations, all the genes forming a chromosome can be the same, and it is not possible to 
change this chromosome via the crossover operator. In such circumstances, for the individuals forming 
the population externally in a certain ratio, the code of these individuals can be changed. In this study 
previously developed double directions sensitive mutation operator was applied to the problems [34]. 

2.6. Termination criteria 

   Termination is the criterion by which a GA decides whether to continue or stop searching. Each 
enabled termination criterion is checked after each generation to determine whether it is time to 
stop. In this study previously developed backward controlled termination criteria applied to the 
problems [35]. 

3. RESULTS 

The application is captured in this section. 

     The four benchmark problems used in this study are; high strength concrete mix design, traveling 
salesman, 0-1, and bounded knapsack problems. The study was carried out in three stages. In the first 
stage, the existing operators namely; the multi-point crossover operator, tournament selection 
operator 1% mutation ratio, and fitness convergence termination criteria were applied to the 
benchmark problems. In the second stage of the study, the analysis was conducted by applying the 
previously developed operators, RMC, BCSO, DDSM, and BCTC, separately to the same benchmark 
problems, and the results obtained from the analysis in this stage were compared with those obtained 
from the first stage. In the third stage, RMC, BCSO, DDSM, and BCTC were collectively applied to the 
same benchmark problems, and the results were compared with those obtained from the first and 
second stages. 

3.1. The knapsack problems (KP) 

The KP is a combinatorial optimization problem. The objective of the KP is to maximize the total 
value (profit) without exceeding the maximum weight. It is modeled as a situation analogous to filling 
a backpack, unable to bear more than a certain weight and value (profit).  

The most commonly solved KP problem is the 0-1 KP, which restricts the number xi of copies of 
each kind of item to zero or one.  Let there be n items, z1 to zn where zi has a value wi and weight wi. xi 
is the number of copies of the item zi, which, as mentioned above, must be 0 or 1. The maximum 
weight that can be carried in the bag is w. It is common to assume that all values and weights are non-
negative. To simplify the representation, it is also assumed that the items are listed in an increasing 
order of weight. Mathematically, the 0-1-KP can be formulated using Eq. 1. 

 
Maximize Restraints: (1) 

 

The sum of the values of the items in the knapsack is maximized so that the sum of weights is less than 
or equal to the capacity of the knapsack. 
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3.1.1. The “0-1” knapsack problem 

In this problem, a 0-1 knapsack was analyzed. In the first stage of the study, the existing 
operators, multi-point crossover operator, and tournament selection operator were applied to the 
BKP problem using a 1% mutation ratio and fitness convergence termination criteria. In the second 
stage, the developed operators (RMC, BCSO, DDCM, and BCTC) were separately applied to the BKP. In 
the third stage of the study, the developed operators (RMC, BCSO, DDSM, and BCTC) were collectively 
applied to the BKP. 

The BKP removes the restriction of having only one of each item but restricts the number xi of 
copies of each kind of item to an integer value ci. Mathematically the BKP can be formulated using Eq. 
18. 

For example, a tourist wants to take a trip with his friends at the weekend. He has a knapsack for 
carrying things but knows that he can carry a maximum of 3 kg. He creates a list of what he wants to 
take for the trip, but the total weight of all items is too much. He then decides to add columns to his 
initial list detailing their weights and a numerical value representing how important each item is for 
the trip (Table I). In this problem, the total weight of the tourist’s knapsack cannot exceed 3 kg and his 
total value should be maximized.  

TABLE I 
 ITEMS WILL BE PUT IN THE 0-1 KNAPSACK PROBLEM 

Code Item Weight 
(kN) 

Value ($) Number 

1 Map 2,5 4,55 1 

2 Compass 3,0 6,82 1 

3 Water 15,0 1,36 1 

4 Sandwich 5,0 1,36 1 

5 Glucose 5,0 4,55 1 

6 Tin 1,0 3,41 1 

7 Banana 5,0 2,05 1 

8 Apple 5,0 1,59 1 

9 Cheese 2,5 6,59 1 

10 Beer 5,0 2,73 1 

11 Suntan cream 7,0 5,59 1 

13 T-shirt 2,0 11,36 1 

14 Trousers 4,0 18,18 1 

15 Umbrella 3,0 6,82 1 

16 Waterproof trousers 4,5 22,73 1 

17 Waterproof overclothes 6,0 34,09 1 
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18 Note-case 1,5 1,82 1 

19 Sunglasses 0,5 4,55 1 

20 Towel 5,0 3,41 1 

21 Socks 0,5 1,36 1 

22 Book 2,0 6,82 1 

 
 
W(x) =   Restraints:  

 

                                                                                                           (3) 

 

: negligence coefficient calculated as follows; 
 

If      xi= 0 or xi= 1      and                                                                                 (4) 
 

If      xi≠ 0 or xi≠ 1      and                                                                                        (5) 
 

: negligence coefficient calculated as follows; 
 

                                                                                                                                              (6) 
 

                                                                                                                            (7) 
 
K:       a coefficient selected for the problem taken as 5 in this study. 

In the first transformation, the constrained objective function was transformed into an 

unconstrained objective function  as shown in Eq. 8. 
 

                                                                                                                        (8) 
 

In the second transformation, the unconstrained objective function  was converted to an F(s) 
fitness function in Eq. 9. 
  

                                                                                                                          (9) 
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    For the BKP, all the fitness values obtained from the individual use of the developed operators were 
higher than those obtained from the existing operators in the first stage; 5.81 % higher in RMC, 4.89 % 
higher in BCSO 5.48% higher in DDSM and 8.27 % higher in BCTC. In the third stage of the study, the 
fitness value obtained from the collective use of the developed operators (RMC, BCSO, DDSM, and 
BCTC) was found to be 11.19% higher than the value obtained from the first stage. The 0-1 knapsack 
weights found by the developed operators in the second stage were all lighter than the weight 
obtained from the existing operators in the first stage; 5.17 % lighter in the RMC; 4.78 % lighter in the 
BCSO, 5.47 % lighter in the DDSM and 8.71 % lighter in the BCTC. The 0-1 knapsack weight found by 
the collective use of the developed RMC, BCSO, DDSM, and BCTC operators in the third stage was 
11.53 % lighter than the weight obtained from the first stage (Table II).  

TABLE II 
THE FITNESS VALUES OBTAINED FROM DIFFERENT OPERATORS FOR THE “0-1” KNAPSACK PROBLEM 

 Existing RMC BCSO DDSM BCTC ALL 

Run 1 0,63 0,69 0,68 0,68 0,71 0,74 

Run 2 0,31 0,37 0,36 0,36 0,39 0,42 

Run 3 0,59 0,65 *0,94 0,64 0,67 0,70 

Run 4 0,74 *0,95 0,79 0,79 0,82 0,85 

Run 5 0,51 0,57 0,56 0,56 0,59 0,62 

Run 6 0,54 0,60 0,59 0,59 0,62 0,65 

Run 7 0,47 0,53 0,52 0,52 0,55 0,58 

Run 8 *0,81 0,87 0,86 *0,86 *0,89 *0,92 

Run 9 0,63 0,69 0,68 0,68 0,71 0,74 

Run 10 0,79 0,80 0,64 0,83 0,69 0,71 

Average 0,521 0,577 0,568 0,565 0,575 0,601 

Best *0,81 *0,95 *0,94 *0,86 *0,89 *0,92 

Time(min.) 69 73 78 71 108 117 

RMC: Randomly mixed crossover operator 
BSCO: Back-controlled selection operator 
DDSM: Double directions sensitive mutation operators 
BCTC: Backward controlled termination criteria 
ALL: Previously developed RMC, BCSO, DDSM, and BCTC 

3.1.2. The bounded knapsack problem (BKP) 

In the first stage of the study, the existing operators, the multi-point crossover operator, and the 
tournament selection operator were applied to the BKP using a 1% mutation ratio and fitness 
convergence termination criteria. In the second stage, the developed operators (RMC, BCSO, DDSM, 
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and BCTC) were separately applied to the BKP. In the third stage of the study, the developed RMC, 
BCSO DDSM operators, and BCTC were collectively applied to the BKP. 

The BKP places no upper bound on the number of copies of each kind of item. Mathematically, 
the bounded knapsack problem can be formulated using Eq. 26. 

 

W(x) = Subject to   

 

      A store boss wants to carry his computer warehouse to another one. He has twenty types and 
12,815 parts (monitors, keyboards, mouse, sound cards, graphics cards, TV cards, modem, etc.) in his 
old warehouse. His computer parts total volume 35,72 m3, but his new warehouse capacity is only 20 
m3. As a result, he can carry only 20 m3 of expensive parts to his new warehouse (Table III).  

TABLE III 
 ITEMS IN THE COMPUTER WAREHOUSE 

 Name Number Volume (cm3) Amount ($) Total volume 
(m3) 

Total Amount 
($) 

1 Monitor 190 40000 225 7,6 42750 

2 Keyboard 250 1200 12 0,3 3000 

3 Mouse 400 180 10 0,072 4000 

4 Sound cards 400 750 30 0,3 12000 

5 Graphic card 450 750 85 0,3375 38250 

6 Modem 600 750 15 0,45 9000 

7 Speaker 750 1200 20 0,9 15000 

8 Camera 400 648 30 0,2592 12000 

9 Hard disk 350 600 67 0,21 23450 

10 DVD drives 350 1500 38 0,525 13300 

11 Floppy disk 300 600 20 0,18 6000 

12 Case 400 45000 30 18 12000 

13 Power  500 3240 10 1,62 5000 

14 Motherboard 500 3000 120 1,5 60000 

15 Memory 2500 72 15 0,18 37500 

16 Scanner 275 10000 40 2,75 11000 

17  Flash drive 3000 20 20 0,06 60000 

18 Adaptor 500 600 15 0,3 7500 

19 Fan 350 320 3 0,112 1050 

http://en.wikipedia.org/wiki/USB_flash_drive
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20 Ethernet 350 170 10 0,0595 3500 

     35,72 376300 

 
 

                                                                                                         (11) 

 

: negligence coefficient calculated as follows; 
 

If      xi≥1      and                                                                                             (12) 
 

If      xi˂1 and                                                                                                         (13) 
 

: negligence coefficient calculated as follows; 
 

                                                                                                                                            (14) 
 

                                                                                                                          (15) 
 
K:       a coefficient selected for the problem taken as 5 in this study. 

In the first transformation, the constrained objective function was transformed into an 

unconstrained objective function  as shown in Eq. 17. 
 

                                                                                                                      (16) 
 

In the second transformation, the unconstrained objective function  was converted to an F(s) 
fitness function in Eq. 34. 
 

                                                                                                                        (17) 
 

     For the BKP, the fitness values obtained from the individual use of the developed operators in the 
second stage were all higher than those obtained from the first stage; 8.57 % higher in the RMC 5.69 % 
higher in the BCSO 6.21 % higher in the DDSM, and 7.59 % higher in the BCTC. In the third stage of the 
study, the fitness value obtained from the collective use of developed operators (RMC, BCSO, DDSM, 
and BCTC) was 14.17 % higher than the value obtained from the first stage.  

     All the knapsack weights found by the developed operators in the second stage were lighter than 
those found by the existing operators in the first stage; 8.62 % lighter in the RMC, 5.18 % lighter in the 
BCSO, 6.79 % lighter in the DDSM and 7.58 % lighter in the BCTC. In the third stage of the study, the 0-
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1 knapsack weight found by the collective use of the developed RMC, BCSO, DDSM, and BCTC was 
12.11 % lighter than the weight obtained from the first stage (Table IV).  

TABLE IV 
THE FITNESS VALUES OBTAINED FROM DIFFERENT OPERATORS FOR BOUNDED KNAPSACK PROBLEM 

  EXISTING RMC BCSO DDSM BCTC ALL 

Run 1 0,52 0,61 0,66 *0,74 0,63 *0,91 

Run 2 0,62 0,71 0,76 0,64 0,61 0,61 

Run 3 0,48 0,57 0,62 0,70 0,76 0,87 

Run 4 0,73 *0,82 *0,77 0,65 0,51 0,72 

Run 5 0,33 0,42 0,47 0,55 0,61 0,72 

Run 6 0,33 0,42 0,47 0,55 0,61 0,72 

Run 7 0,57 0,66 0,71 0,71 *0,85 0,46 

Run 8 0,79 0,57 0,63 0,54 0,67 0,78 

Run 9 *0,89 0,68 0,73 0,49 0,49 0,67 

Run 10 0,68 0,77 0,52 0,47 0,46 0,53 

Average 0,505 0,541 0,557 0,53 0,535 0,608 

Best *0,89 *0,82 *0,77 *0,74 *0,85 *0,91 

Time(min.) 71 68 73 76 97 106 

RMC: Randomly mixed crossover operator 
BSCO: Back-controlled selection operator 
DDSM: Double directions sensitive mutation operators 
BCTC: Backward controlled termination criteria 
ALL: Previously developed RMC, BCSO, DDSM, and BCTC 

 
3.1.3. The unbounded knapsack problem (UKP) 

      In this problem, 0.25 %, 0.50 %, 0.75 %, 1 %, and DDSM mutation ratios were applied to the 
unbounded knapsack problem. The UKP places no upper bound on the number of copies of each kind 
of goods.  

The unbounded knapsack problem (UKP) places no upper bound on the number of copies of each kind 
of good and can be formulated as above except that, the only restriction on xi is that it is a 
nonnegative integer. Mathematically the unbounded knapsack problem can be formulated using Eq. 8: 
 
W (x) = Subject to  
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In this problem; a greengrocer wants to buy fruits with his all money. He has 100,000 USD dollars and 
can buy fruits with this money. For the greengrocer fruit kind, weight, or volume is not important, 
because he wants to buy profitable fruits, with his money, and wants to earn maximum money from 
this trade (Table 5.). 
 

                                                                                                                          (19) 
 
K:       a coefficient selected for the problem taken as 5 in this study. 

In the first transformation, the constrained objective function was transformed into an 

unconstrained objective function  as shown in Eq. 20. 
 

                                                                                                                      (20) 

In the second transformation, the unconstrained objective function  was converted to an F(s) 
fitness function in Eq. 21. 
 

                                                                                                                        (21) 
 
Using the unbounded knapsack problem, the highest fitness value was 0, 704 to 68 % mutation ratio, 
and the average fitness value was 0,630 for the LN mutation ratio. For the 68 % mutation ratio, the 
highest fitness value was 11,71 % higher than the lowest fitness value for this problem (Table 6.). The 
fruit maximum price of 0,704 fitness value was 98,700 $, and the average was 94,610 $. Fruits' 
maximum price was 4,68 % bigger than their average price. 

4. CONCLUSION 

In the first step of the study existing random mixed crossover, back controlled selection, double 
directions sensitive mutation operators, and backward controlled termination criteria were applied to 
the benchmark high-strength concrete mix design, reinforced concrete beam, 0-1 knapsack, and 
bounded knapsack problems.  

In the second step of the study previously developed random mixed crossover, back controlled 
selection, double directions sensitive mutation operator, and backward controlled termination criteria 
were applied to the benchmark problems in the different analyses, and results obtained from this step 
analysis compared with the first step analysis results. The fitness value obtained from the developed 
operators used second-step analysis higher than the fitness value obtained from existing operators 
using first-step analysis. 

In the third step of the study, RMC, BCSO, DDSM, and BCTC were applied to the same benchmark 
problem in the same analysis, and results obtained from this step analysis were compared with first 
step analysis results. The fitness value obtained from the developed operators used third-step analysis 
higher first-step analysis, and the developed operator used second-step analysis. 

It should be noted that the analyses using the developed operators used together were 
completed over a longer period than the analyses using the existing operators, and developed 
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operators used separately. It can be said that the developed operators used a more extensive search 
of the design space than existing operators, and developed operators used separately. 

In conclusion, the previously developed random mixed crossover, back controlled selection, 
double directions sensitive mutation operators, and backward controlled termination criteria can 
contribute advantages for solving too complex engineering problems. 
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