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Abstract 
 
Principal component analysis (PCA) is an important tool in many areas including data reduction and 
interpretation, information retrieval, image processing, and so on. Kernel PCA has recently been proposed 
as a nonlinear extension of the popular PCA. The basic idea is to first map the input space into a feature 
space via a nonlinear map and then compute the principal components in that feature space. This paper 
illustrates the potential of kernel PCA for dimensionality reduction and feature extraction in multimedia 
retrieval. By the use of Gaussian kernels, the principal components were computed in the feature space of 
an image data set and they are used as new dimensions to approximate image features. Extensive 
experimental results show that kernel PCA performs better than linear PCA with respect to the retrieval 
quality as well as the retrieval precision in content-based image retrievals. 
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1. Introduction 

An explosion in the amount of digital image data has brought about the need for image 
retrieval systems. This demand has made image retrieval a very active re-search area in recent 
years. Content-based image retrieval (CBIR) supports image searches based on visual features 
such as color, texture, and shape. In a CBIR system, these features are extracted and stored as 
feature vectors. During the retrieval process, the feature vector of the query image is computed 
and matched against those in the database. The returned images should be similar to the query 
image. This similarity (or nearest neighbor) indexing/retrieval problem can be solved efficiently 
when the feature vectors have low or medium dimensionalities (e.g., less than 8) by the use of 
existing indexing methods such as the R*-tree [1] and the HG-tree [2]. So far, however, there 
has been no efficient solution to this problem when the feature vectors have high 
dimensionalities, say over 100. In fact, for a high dimensionality, in theory or in practice, the 
performance of existing indexing methods degenerates to being worse than that of the brute-
force sequential scan that compares the query object to each data object [3]. So the issue is to 
overcome the curse of dimensionality – a phenomenon that the retrieval performance degrades 
drastically as the dimensionality increases. Motivated by the dimensionality curse, approaches 
to reduce the dimensionality of image feature vectors have been attempted by the use of some 
dimensionality reduction techniques such as principal component analysis [4, 7]. 

Principal component analysis (PCA) [5] has been widely used for re-expressing 
multidimensional data. It allows researchers to reorient the data so that the first few 
dimensions account for as much of the available information as possible. If there is substantial 
redundancy present in the data set, then it may be possible to account for most of the 
information in the original data set with a relatively small number of dimensions. In other 
words, PCA finds out for the original data set the new structure given by the linear combination 
of the original variables. However, one cannot assert that linear PCA will always detect all 
structure in a given data set. By the use of suit-able nonlinear features, one can extract more 
information. In this paper, we investigate the potential of a nonlinear form of PCA for 
dimensionality reduction and feature extraction in content-based image retrieval. 

In the next section, we review the standard linear PCA and introduce the kernel PCA that is a 
nonlinear extension of PCA. In Section 3, we provide the process of the dimensionality reduction 
and feature extraction using the kernel PCA. In Section 4, we discuss the measures to assess the 
performance of the kernel PCA. Section 5 presents experimental results to compare the 
performances of the kernel PCA and the linear PCA. In Section 6, we conclude with a discussion 
of the significance of the work. 

 

2. Kernel PCA 

PCA is an orthogonal basis transformation. The new basis is found by diagonalizing the 
covariance matrix C of a centered data set {xi  RN | i = 1, , m}, defined by  

 
                                                                                                                                                                                 
 
The coordinates in the Eigenvector basis are called principal components. The principal 

components are given by the linear combination of the original variables. The size of an 
Eigenvalue  corresponding to an Eigenvector v of C equals the amount of variance in the 
direction of v. Furthermore, the directions of the first n Eigenvectors corresponding to the 
biggest n Eigenvalues cover as much variance as possible by n orthogonal directions. In many 
applications, they contain the most interesting information, for example, in data compression, 
where we project onto the directions with biggest variance to retain as much information as 
possible, or in data de-noising, where we deliberately drop directions with small variance.  

Clearly, one cannot assert that linear PCA will always detect all structure in a given data set. 
Moreover, it can be very sensitive to “wild” data (“outliers”). By the use of suitable nonlinear 
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features, one can extract more information. Kernel PCA is very well suited to extract interesting 
nonlinear structures in the data [13].  

The purpose of our work is therefore to consider the potential of kernel PCA for 
dimensionality reduction and feature extraction in CBIR. Kernel PCA first maps data into some 
feature space F via a (usually nonlinear) function  and then performs linear PCA on the 
mapped data. As the feature space F might be very high dimensional (e.g., when mapping into 
the space of all possible d-th order monomials of input space), kernel PCA employs Mercer 
kernels instead of carrying out the mapping  explicitly. A Mercer kernel is a function k(x, y) 
which for all data sets {xi} gives rise to a positive matrix Kij = k(xi, yj) [11]. Using function k instead 
of a dot product in input space corresponds to mapping the data with some  to a feature space 
F, i.e., k(x, y) = ((x) (y)). Fig. 1 shows the basic idea of the kernel PCA. After mapping the 
original data onto some high-dimensional feature space F via  (right in Fig.1(b)), we perform 
linear PCA, just as a PCA in input space (Fig.1(a)). Since F is nonlinearly related to input space 
(via ), the contour lines of constant projections onto the principal Eigenvector (drawn as an 
arrow) become nonlinear in input space.  

 
 
 
 
 
 
 
 
 
 
 
 

To perform PCA in feature space F, we need to find Eigenvalues  > 0 and Eigenvectors v  

F{0} satisfying v = C v with the covariance matrix C in F, defined as 

 
Substituting C into the Eigenvector equation, we note that all solutions v must lie in the span of 

-images of the sample data. This implies that we can consider the equivalent equation 
 
 
 
and that there exist coefficients 1, , m such that 
 
 
 
  
Substituting C and (2) into (1), and defining m  m Gram matrix Kij = k((xi), (yj)) = k(xi, yj), we 
arrive at a problem which is cast in terms of dot product. Solve 

 
m = K 

 
for nonzero Eigenvalues  and Eigenvectors  = (1, , m)t subject to normalization condition 


k(k  k) = 1. To extract nonlinear principal components for the -image of a test point x, we 

compute the projection onto the k-th component by  

 
 

Fig. 1. The basic idea of kernel PCA: (a) linear PCA; (b) kernel PCA 
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3. Feature Extraction and Dimensionality Reduction 

Fig. 2 shows the architecture of kernel PCA for image feature extraction, which involves three 
layers with entirely different roles. The input layer is made up of source nodes that connect the 
kernel PCA to its environments. The input x and the expansion patterns xi are nonlinearly 
mapped via  into a feature space F where dot products are computed. Through the use of the 
kernel k, these two layers are in practice computed in one step. The results are linearly 
combined using weight i

l, found by solving an Eigenvalue problem, resulting in the l-th 
nonlinear principal component corresponding to . Therefore the first p principal components 
(assuming that the Eigenvectors are sorted in descending order of their Eigenvalue size) 
constitute the p-dimensional feature vector for an image. By selecting the proper kernels k, 
various mappings  can be indirectly induced. In our work, we use the Gaussian kernel k(x, x) = 
exp(-(||xx||2/22)) because it is widely used in content-based image retrieval and pattern 
recognition [9, 14]. 

Unlike linear PCA, kernel PCA allows the extraction of a number of principal components 

which can exceed the input dimensionality because it diagonalizes the m  m Gram matrix K, Kij 

= k(xi, yj), instead of the covariance matrix C. However, images are not randomly distributed in 
high-dimensional feature space. As an instance, our image database consists of 13,724 256-color 
images of U.S. stamps and photos. Stamps often come in series (e.g., states, birds, flowers) with 
common colors and related designs, and the U.S. Post Office has often used similar colors for 
many long-running stamps. As a result, this real image data set shows highly clustered 
distribution. In other words, the dimensionality of the feature space may be much smaller than 
that of the input space, and it is appropriate to reduce the dimensionality of the original image 
data. In our work, we retain a sufficient number of principal components so that we can account 
for at least 80% of the variance in each original variable. 
 

 

4. Feature Extraction and Dimensionality Reduction 

In this section, we consider the measures to assess the performance of kernel PCA. In 
traditional (document) information retrieval, performance is often measured by using precision 
and recall [10, [12]. Recall measures the ability of the system to retrieve useful items, while 
precision measures its ability to reject useless items. For a given query, let T the total number of 
relevant items available, Rr the number of relevant items retrieved, and Tr the total number of 
retrieved items. Then precision is defined as Rr / Tr, and recall as Rr / T.  
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Fig. 2. Image feature extraction architecture with kernel PCA  
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Precision and recall can also be applied to image retrieval. In IBM QBIC that performs 
similarity retrieval as opposed to exact match, normalized precision and recall have been 
suggested [6]. These reflect the positions in which the set of relevant items appear in the 
retrieval sequence (ordered by some similarity measure). If there are T relevant images in the 
database, then for an ideal retrieval, all T relevant items occur in the first T retrievals (in any 
order). Faloutsos et al. [6] define this as IAVRR, the ideal AVRR (average rank of all relevant, 
retrieved images). It is the maximum when all relevant images are retrieved on the top: IAVRR = 
(0 + 1 +  + (T1)) / T (where the first position is the 0-th). The ratio of AVRR to IAVRR gives a 
measure of the effectiveness of the retrieval. In an ideal case of retrieval, this ratio would be 1. 

For example, if the relevant images for the query image A are defined as: 
 

A46, A18, A101, A52, A35, A102 
 
so that T = 6, and a CBIR system returns, in order: 
 

A102, A109, A50, A18, A74, A46, A52, A57, A17, A35, A63, A16, A58, A101 
 
then relevant items appear at 0, 3, 5, 6, 9 and 13. The AVRR for this is therefore (0 + 3 + 5 + 6 + 9 
+ 13)/6 = 6. The IAVRR would be (0 + 1 + 2 + 3 + 4 + 5)/6 =2.5. Thus AVRR / IAVRR is 2.4.  

If the order of retrieval matters, Kendall’s tau can be used to provide measures of 
association between two sets of data [8]. Kendall’s tau can be viewed as a coefficient of 
disorder. For example, consider the following two rankings, where both have selected the same 
four images, but have placed them in a different order: 

 
1  2  3  4 
2  1  4  3 

 
Tau is calculated as 
 

(no. of pairs in order  no. of pairs out of order) / (total no. of possible pairs) 
 
For this example, 2 in the bottom row is followed by 1, 4, and 3, 2-1 is out of order, scoring -1, 
and 2-4, 2-3 are in order, scoring +1 each. Similarly, 1 is followed by 4 and 3. Both are in order, 
scoring +1 each. Finally, 4 is followed by 3, scoring -1. The number of in-order pairs is four, and 
out-of-order pairs is two, therefore the total is +2, divided by the maximum number of in-order 
pairs, N(N-1)/2, which here is 6, since N = 4. The value of tau is therefore 2/6, or 0.3333. This 
gives a measure of the “disarray” or difference in ranking, between the two. It ranges from -1, 
which represents complete disagreement, through 0, to +1, complete agreement.  

For each experiment in our work, we report the average of the above measures over 100 k 
nearest neighbor (k-NN) queries. For k-NN queries, precision and recall are the same because T 
= Tr, i.e., the total number of relevant items and the total number of retrieved items are the 
same. There we compute only the precision measure as a representative. The ratio of AVRR to 
IAVRR gives a measure that how much the results are close to the top. Kendall’s tau provides a 
measure of the order for the k-NN search results. 

 

 

5. Experimental Results 

To demonstrate the effectiveness of kernel PCA, we performed an extensive experimental 
evaluation for kernel PCA and compared it to linear PCA. For our experiments we used 13,724 
256-color images of U.S. stamps and photos. To obtain feature vectors for experiments, we used 
four MPEG-7 visual features: (1) color structure descriptor (256 dimensions), (2) homogeneous 
texture descriptor (30 dimensions), (3) edge histogram descriptor (80 dimensions), and (4) 
region-based shape descriptor (35 dimensions). These descriptors are general descriptors that 
can be used in CBIR. The color structure descriptor represents an image by both the color 
distribution of the image (similar to a color histogram) and the local spatial structure of the 
color. The homogeneous texture descriptor characterizes the region texture using the mean 
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energy and the energy deviation from a set of frequency channels. The edge histogram 
descriptor represents local-edge distribution in the image. The region-based shape descriptor 
takes into account all pixels constituting the shape, that is, both the boundary and interior 
pixels.  

We applied kernel PCA and linear PCA to those four data sets consisting of MPEG-7 visual 
descriptors, respectively, in order to reduce their dimensionality. We posed k nearest neighbor 
queries to 3 kinds of data sets, i.e., (1) the original data set whose dimensionality is not reduced, 
(2) the data set whose dimensionality is reduced by kernel PCA, and (3) the data set whose 
dimensionality is reduced by linear PCA. In all experiments, the numbers of nearest neighbors to 
find were 20, 40, 60, 80 and 100 and we averaged their results. 100 random k-NN queries were 
processed in each experiment and the results were averaged.  

Table 1.  Color structure experiments 

original 

dim = 256 

Linear PCA       Kernel PCA 

Precision AVRR/IAVRR Tau       Precision        AVRR/IAVRR       Tau 

95% 
(dim = 164) 

0.62 3.45 0.42       0.73         3.05       0.70 

90% 
(dim = 113) 

0.59 3.65 0.37       0.67         3.17       0.62 

85% 
(dim = 77) 

0.53 3.70 0.38       0.64         3.25       0.63 

 

Table 2.  Homogeneous texture experiments 

original 

dim = 30 

Linear PCA      Kernel PCA 

Precision AVRR/IAVRR Tau 
     
Precision 

       
AVRR/IAVRR 

     Tau 

95% 
(dim = 14) 

0.60 3.50 0.41      0.71       3.15        0.69 

90% 
(dim = 10) 

0.56 3.75 0.37      0.66       3.30        0.64 

85% 
(dim = 9) 

0.51 3.80 0.36     0.62       3.45      0.61 

 

Table 3.  Edge histogram experiments 

original 
dim = 80 

Linear PCA Kernel PCA 

Precision AVRR/IAVRR Tau Precision AVRR/IAVRR Tau 

95% 
(dim = 30) 

0.59 3.48 0.45 0.69 3.27 0.61 

90% 
(dim = 25) 

0.54 3.45 0.42 0.64 3.27 0.60 

85% 
(dim = 22) 

0.50 3.68 0.39 0.61 3.35 0.58 

 

Tables 1 – 4 show that the experimental results for four MPEG-7 visual features. The first 
column of each table represents the dimensionality of the original data and the dimensionalities 
of the transformed data after the dimensionality reduction. In addition, the percentages of the 
variance in each original variable we retain are also provided in the first column of each table. 
The performance of kernel PCA is better than that of linear PCA with respect to all three 
performance parameters, i.e., precision, the ratio of AVRR to IAVRR, and Kendall’s tau. In terms 
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of precision and AVRR/IAVRR, kernel PCA is 10% – 20% better than linear PCA. With respect to 
Kendall’s tau, kernel PCA is better than linear PCA more than 50%. These experimental results 
indicate that kernel PCA can be successfully employed as a generalized nonlinear extension of 
linear PCA. 

 

6. Conclusion 

In this paper, we described the potential of kernel PCA for dimensionality reduction and 
feature extraction in content-based image retrieval. Through the use of Gaussian kernel, a 
kernel PCA was able to work effectively within the feature space of image data sets, thereby 
producing a good performance. Compared with linear PCA, kernel PCA showed better 
performance with respect to the retrieval quality as well as the retrieval precision in content-
based image retrieval. Therefore, we can conclude that kernel PCA can be successfully employed 
as a generalized nonlinear extension of linear PCA. 
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