

Global Journal of

Information Technology

 Volume 06, Issue 1, (2016) 65-71

http://sproc.org/ojs/index.php/gjit

Detecting similar opinion holders for massive sentiment analysis

Erdem Alparslan, Bahcesehir University, Çırağan Caddesi Osmanpaşa Mektebi Sokak No: 4, Istanbul

34349, Turkey.
Adem Karahoca *, Bahcesehir University, Çırağan Caddesi Osmanpaşa Mektebi Sokak No: 4, Istanbul

34349, Turkey.

Suggested Citation:
Alparslan, E., & Karahoca, A. (2016). Detecting similar opinion holders for massive sentiment analysis.

Global Journal of Information Technology. 6(1), 65-71.

Received 17 January, 2016; revised 21 February, 2016; accepted 10 March, 2016.
Selection and peer review under responsibility of Prof. Dr. Adem Karahoca, Bahcesehir University, Turkey
©

2016 SciencePark Research, Organization & Counseling. All rights reserved.

Abstract

Sentiment Analysis is the study of acquisition, extraction and interpretation of human opinions,
sentiments, attitudes and emotions from both structured and unstructured data sources. Also called
opinion mining, the field is becoming crucial for various application areas including market researches,
politics, sociology and economics. Therefore, many outstanding research efforts are performed on the
fields including both theoretical and practical aspects. This paper aims to develop a supportive framework
for sentiment analysis, focusing on the similarity of opinion holders in a massive dataset. We used e-
commerce review dataset of Amazon spanning May 1996 – July 2014. The whole review set includes more
than 140 million entries. As a preprocessing task each review is structured and expressed on a quadruple
form of 4 dimensions: Target entity, opinion holder, sentiment and time. The aim of this study is to find
out similar opinion holders for a given customer on a certain product in real time. We have defined a new
method spanning all the opinions of an individual. The idea behind this calculation of similarity is rating of
the same product with the same sentiment factor by two different opinion holders. The real-time
calculation is also performed on Hadoop clusters. Performance enhancements and accuracy rates are
then discussed.

Keywords: sentiment analysis, opinion mining, big data analytics, Map-Reduce

*ADDRESS FOR CORRESPONDENCE: Adem Karahoca, Bahcesehir University, Çırağan Caddesi Osmanpaşa Mektebi

Sokak No: 4, Istanbul 34349, Turkey. E-mail address: adem.karahoca@bahcesehir.edu.tr / Tel.: +90 212 381 05 60

http://sproc.org/ojs/index.php/gjit
mailto:adem.karahoca@bahcesehir.edu.tr

Alparslan, E., & Karahoca, A. (2016). Detecting similar opinion holders for massive sentiment analysis. Global Journal of Information
Technology. 6(1), 65-71.

 66

1. Introduction

Modern marketing strategies are mostly built on customer satisfaction and tailor-made
individual customer orientation. One of the most useful information regarding customer
orientation is customer review. Customers highly need the others’ opinions about the product
that they are looking for. In a dense environment the number of reviews which are commented
on a single product may exceed hundreds or thousands. Apparently it is not possible for a
customer to read and evaluate this amount of reviews at a time. We are facing the huge amount
of reviews problem by this scenario. Promoting the helpful reviews for the customer is a crucial
marketing effort which is often studied by especially e-marketing companies. Most of these
efforts are defining most helpful reviews on a vote-basis elimination technique. The reviews are
marked as “helpful” by the other customers. The assumption is: “Top rated reviews are the most
helpful review for this product”.

Vote-basis helpful review detection is an easy and useful idea. However, it rules out the
individuals’ discriminations, likings, preferences on aspects and socio-economic conditions. We
know that each product on the market founds a buyer and meet one’s needs. Suggesting a
single review as the most helpful review to all kind of customers with different perceptions,
purchasing powers and expectations may mislead the customers’ transactions and may cause
dissatisfaction [1]. To overcome this problem, we studied on a person-basis helpful reviewer
detection. Similar Opinion Holders Algorithm (SOHA) counts per-customer based helpful
reviewers and promotes their reviews on a certain product. The idea behind SOHA is detecting
the similarities between an individual customer and all the other customers and rating them
according to the selected similarity indicator. SOHA is a higher order algorithmic framework.
Similarity detection methods can be applied on SOHA as an add-on.

The study is structured very straightforward. In the second section we introduced the
application framework consists of the dataset used, the SOHA algorithm itself and the
parallelization for streaming big data problems. Results are given and discussed under the third
section. Last section concludes the idea and the study mentioning the future directions.

2. Application Framework

2.1. Application Dataset

E-commerce datasets are the best data sources for sentiment analysis applications. In this
study we applied our methods on Amazon product-review dataset [2]. The dataset contains
product reviews and metadata information from Amazon website, including 143.7 million
reviews spanning the years from 1996 to 2014. The dataset is categorized under sub-classes due
to the product category which the review is written for. We have selected the category
“Electronics” for our study.

{
 "reviewerID": "A2SUAM1J3GNN3B",
 "asin": "0000013714",
 "reviewerName": "J. McDonald",
 "helpful": [2, 3],
 "reviewText": "I bought this for my husband who plays the piano. He is having a wonderful
time playing these old hymns. The music is at times hard to read because we think the book was
published for singing from more than playing from. Great purchase though!",
 "overall": 5.0,
 "summary": "Heavenly Highway Hymns",
 "unixReviewTime": 1252800000,
 "reviewTime": "09 13, 2009"
}

Alparslan, E., & Karahoca, A. (2016). Detecting similar opinion holders for massive sentiment analysis. Global Journal of Information
Technology. 6(1), 65-71.

 67

Reviews and metadata files in JSON format are handled with Pandas Python library [3]. Each
review is deserialized in a data frame and transformed in a quadruple form of 4 dimensions:
Target entity, opinion holder, sentiment and time. In this study we prefer to express sentiments
based on reviewer rates. No any Natural Language Processing (NLP) task is performed. This
means that aspect level sentiments are not considered. However, entity level sentiments are
expressed in 3 classes: Positive, neutral and negative.

1.1. Similar Opinion Holders Algorithm (SOHA)

Problem Definition: Given a set of reviewers R = { } and a set of products P = {
} and each has a set of reviews with each reviewed a set of products , we

need to identify k closest reviewers in R to a certain reviewer for a product .

For a definite product-reviewer pair [] firstly we define all the reviewers of which is
said . The rating similarities between and the each reviewer in give us the set of k closest
opinion holders for . The similarity calculation schema is an add-on for SOHA. In this study we
hold the similarity calculation metric as easy as possible without any NLP tasks.

1. for each reviewer ∈
2. select the set of products which has already reviewed ⊆
3. for each ∈

4. if has already reviewed

5. if rate() == rate()

6. sim_score() += 1
7. else
8. sim_score() -= 1
9. order the element of due to the similarity scores
10. select top k reviewer from

Listing 1. SOHA Algorithm on a single node

This algorithm above works in a sequential order in a linear time to define closest opinion
holders for a single, unique opinion holder. This does not aim to extract inter-relationships
between all the opinion holders. In a real timed e-commerce application if a customer face with
a product page including reviews, the system must be able to decide the closest reviewers and
suggest their opinions as top reviews. Due to the huge amount of historical data and below-a-
second response time, we preferred to study one of the most prospering parallelization
paradigms, MapReduce on Hadoop clusters.

1.2. Parallelization by MapReduce Paradigm

The Map-Reduce programming model is accepted as a de-facto computation framework for
big data analysis. It was first introduced by Google in 2004 and developed by Yahoo. Several
implementations of Map-Reduce paradigm exist including Microsoft Dryad, Google Sawzall and
Apache Hadoop. Hadoop, an open source development project supported by Apache
Foundation is the most popular and documented framework to realize Map-Reduce based
applications.

Map-Reduce is a distributed computational framework enabling data intensive analysis. It is
inspired by the functional programming paradigm [4]. Based on divide-and-conquer method, it
recursively breaks down a complex computational problem into sub-problems which allow to be
solved directly by a standard computing environment. These sub-problems are assigned to many

Alparslan, E., & Karahoca, A. (2016). Detecting similar opinion holders for massive sentiment analysis. Global Journal of Information
Technology. 6(1), 65-71.

 68

worker nodes called Mappers and processed by these mapper nodes in parallel. The
intermediate results of the sub-problems are combined based on some key and assembled by
Reducer nodes. The overall computation result is delivered by reducer nodes. The processing
unit used in the communication between mapper nodes and the reducer nodes is a key-value
pair. The mapper outputs are denoted by a key and reducer nodes regroup values from various
mappers based on these keys. The process of passing key-value pairs from mappers to the
reducer is known as shuffling. Each reducer is assigned a subset of the intermediate key space,
called a partition.

The mapper and reducer nodes are called worker nodes and master nodes in Hadoop
computation environment [5]. The master node takes the input, divides it into smaller sub-
problems, and distributes them to worker nodes in Map step.

Figure 1. Map-Reduce Sample Infrastructure

Figure 1 shows a sample data flow of Map-Reduce framework. In this sample setup, input

dataset is split into 4 buckets. Each bucket is processed by its assignee mapper node. The
computation part of the algorithm is handled in mapper modes. A mapper node delivers its local
output as a key-value pair. All the keys delivered from all mappers are allocated to different
reducer nodes. Reducer nodes are responsible of reading these local outputs from the network
and combining them based on their keys. The aggregation part of the algorithm is handled in
reducer nodes. The aggregation results based on key combination are delivered to the output
files.

This study by nature is highly convenient to adapt in a MapReduce framework. As seen in
listing 2, SOHA algorithm transacts on various reviewers for a single product. For each reviewer
it calculates a similarity score depending their historical review records. A small adaptation in
SOHA algorithm can easily parallelize the execution framework.

Let o is the number of mapper nodes in our MapReduce setup. The set of products P can be
split to various mapper nodes as , ,. . . , . The SOHA algorithm can be ran on each mapper
node for its’ dedicated subset of products .

Mapper Execution:

for each reviewer ∈

 select the set of products which has already reviewed ⊆
 for each ∈

 if has already reviewed

Alparslan, E., & Karahoca, A. (2016). Detecting similar opinion holders for massive sentiment analysis. Global Journal of Information
Technology. 6(1), 65-71.

 69

 if rate() == rate()

 sim_score() += 1
 else
 sim_score() -= 1

Reducer Execution:

Sum up sim_score() of each node to a global similarity rate
order the element of due to the its global similarity rate
select top k reviewer from

Listing 2. SOHA Algorithm on Map reduce

2. Results and Discussion

In the previous sections we explained the structure of the dataset, clarified the Similar
Opinion Holders Algorithm (SOHA) and enriched the algorithm by using MapReduce
parallelization. This section aims to give the results of singular and parallel execution of SOHA
algorithms on Amazon datasets via 1, 2, 4 or 8 nodes. The results are shown on Table 1.

Definition: Scale factor can be calculated by the terms on Listing 2. It is the combination of all
elements in and . Thus we may say that it is the product of the cardinality of and the
cardinality of .

Table 1. Execution times on various MapReduce setups

Scale Factor 1 node 2 nodes 4 nodes 8 nodes

100 0.22 0.13 0.08 0.05

1000 1.80 1.00 0.63 0.34

10000 16.50 7.90 5 2.4

100000 130 68 35 15

Figure 2 demonstrates the decrease in execution time of SOHA algorithm in case of the usage
of Map Reduce parallelization. One may notice that the parallelization has a valuable effect on
especially on bigger scale factors.

Figure 2. Noticeable decrease in execution time

Alparslan, E., & Karahoca, A. (2016). Detecting similar opinion holders for massive sentiment analysis. Global Journal of Information
Technology. 6(1), 65-71.

 70

Figure 3 apparently reveals the positive effect of parallelization on the execution time of SOHA
algorithm. In comparison with single node execution, the more parallel environment yields the
better execution times.

According to the results that we have obtained from various MapReduce setups we may

obviously note that our SOHA algorithm is giving response in meaningful time whether the
dataset has a big scale factor. The execution time of SOHA depends basically on scale factor. The
more reviewer SOHA handles requires much more execution time. The same constraint is either
on the number of products that each reviewer has reviewed. Scale factor depends on these two
values. For the accuracy on calculation of similar opinion holders we need huge amount of
reviewers, each has a large number of reviewed products. This means a great value of scale
factor, hence increase in execution time. The operation details of the parallelization show us
that mapping the problem into multiple mappers can separate the execution time in linear
manner. Shuffling between mapper nodes does not cost much in our problem. By the advantage
of linearly separable structure of SOHA, we can add as much as possible nodes to reduce the
execution time in a usable interval.

3. Conclusion

In this study, we proposed an algorithm to detect similar opinion holders of a customer on an
e-commerce dataset. The algorithm is designed adaptive to MapReduce parallelization as much
as possible. We tried the algorithm on 1-node, 2-nodes, 4-nodes and 8-nodes Hadoop clusters.
Based on obfuscated real world data we reached very meaningful results. The proposed
algorithm, SOHA takes review rates in consideration. This may mislead the algorithm and also
disallow the calculation of the similarity according to a sub aspect of a product. In the future, we
plan to analyze the comment itself by using Natural Language Processing techniques. Also, we
plan to exercise the reviews in aspect level. Entity level review consideration may sometimes
misrepresent the opinion holder’s intent.

References

[1] M. J. Shaw, C. Subramaniam, G. W. Tan, & M. E. Welge, (2001). “Knowledge management and data
mining for marketing,” Decis. Support Syst., 31(1), 127–137,

[2] J. McAuley, “Amazon product data,” 2015. [Online]. Available:
http://jmcauley.ucsd.edu/data/amazon/.

Figure 3. The effect of parallelization on SOHA

Alparslan, E., & Karahoca, A. (2016). Detecting similar opinion holders for massive sentiment analysis. Global Journal of Information
Technology. 6(1), 65-71.

 71

[3] Pandas, “Pandas Data Analysis Library,” 2015. [Online]. Available: http://pandas.pydata.org/.
[4] C. L. Philip Chen and C.-Y. Zhang, “Data-intensive applications, challenges, techniques and

technologies: A survey on Big Data,” Inf. Sci. (Ny)., vol. 275, pp. 314–347, Aug. 2014.
[5] U. Gupta and L. Fegaras, “Map-based graph analysis on MapReduce,” 2013 IEEE Int. Conf. Big Data, pp.

24–30, Oct. 2013.

