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Abstract 
 
Purpose of Study: We investigate the big data studies using batch and/or streaming data generated in the 
process of software development lifecycle. All phases of application development phases are in our scope 
including but not limited to elicitation, requirements analysis, design, software implementation, version 
control management, unit / functional / regression / automated / performance / stress test, release 
management, application log monitoring,  application usage monitoring, user complaint management, 
security and compliance management and software problem management. 

Methods: We use a systematic literature review methodology used in Software Engineering studies to find 
and analyse the related studies published from January 2010 to October 2015. We synthesize the 
quantitative and qualitative outputs of selected papers and report the results.  

Findings and Results: In general, there are scarce studies in the literature. However there are relatively 
more papers regarding some areas such as Software Quality, Development, Project Management and 
Human Computer Interaction. However research in some fields such as Deployment, Requirements 
Engineering, Release Management and Mobile Applications were relatively less.   

Conclusions & Recommendations: More studies are required to identify the use cases, data attributes, 
measurements, platform requirements especially in the fields which are identified as having lack of study.  
A holistic big data perspective is needed to support software engineering ecosystems in large and 
complex enterprises.  
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1. Introduction 

Knowledge discovery from big data seems to have a huge potential for businesses, scientific 
studies, governments and so on. It presents lots of new opportunities and new research avenues 
[1]. Big Data also enables synergistic inter- disciplinary studies [2]. The 5Vs (Volume, Velocity, 
Variety, Veracity and Value) of big data [3] have become valid for the data generated within 
software engineering ecosystem or in the process of software development life cycle from 
elicitation to deployment and monitoring in the field until  phasing out of the software. For 
example software source code is a basic artefact in the software engineering domain and 
Google declared that it had 2 billion lines of code [4]. This huge quantity gives an idea about 
how much software related big data a large enterprise sit over. Another example is the 
artefacts, changes and process data produced during the life cycle of software projects 
conducted in a large scale enterprise. In a recent case study, the number of total yearly finished 
projects (Small and mid-size)  in a large telecommunications company is given as 5350 [5]. 
Considering some basic use cases that generates data in the context of the projects, for instance 
people assignments or timesheet data may yield an order of magnitude increase in the number. 
Code changes may introduce an increase of two orders of magnitude. Logs, transactions, usage 
or incidents data generated brings us to three, four or more orders of magnitude of project 
numbers. Therefore, software engineering practitioners have already entered the era of big 
data. We observe this phenomenon in the organisation of leading technology companies such as 
Microsoft and Google as well. Microsoft has a research team conducting empirical software 
engineering research and Google employs at least 100 engineers  in developing its tools using 
data mining technics [6]. 

In this study, we conducted a systematic literature review (SLR) covering the intersection of 
Big data and concepts around software engineering discipline. The rest of the paper is organized 
as follows: research method details are given in the second section. The third section discusses 
the results obtained from extracted data and is followed by the conclusions. 

 

2. Research Method 

We conducted the SLR following Kitchenham and Charters’ de facto review guideline for 
software engineering [7]. This methodology has been used in more than one thousand six 
hundred studies (Google Scholar’s citation count) in last eight years. The original idea for 
employing systematic literature review practice is coming from evidence-based medicine. 
Kitchenham and Charters customised the method for Software Engineering domain [7]. There 
are three main stages of the method: planning, conducting and documenting the review.  The 
review steps are as follows: definition of the research questions, design of the search, 
conducting the search, selecting the studies, assessing the quality and synthesizing the data at 
hand.  

 

2.1. Research Questions 

In this SLR we intend to find answers for the following questions: 

Research Question 1: In which software engineering areas Big Data and Software Engineering 
are interacting and to what extent? By Big Data we mean related keywords such as data mining, 
analytics, streaming data, complex event processing, knowledge discovery, operational 
intelligence etc. This researh question aims to find the areas (requirements engineering, 
performance testing etc.) that benefits from the Big Data research. State of practice for the 
Software Engineering practitioner community and research opportunities for researchers will 
also be identified. 
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Research Question 2: Which software engineering artefacts are used for Big Data processing? 
What are the most frequently used artefacts? We want to discover the types of data used in 
Software Engineering Big Data research and whether there is a lack of holistic data usage or not. 

 

2.2. Search Strategy 

Having defined the research questions in previous section, we designed a search string based 
on the questions. To cover all relevant studies, keywords and terms regarding Software 
Engineering and Big Data are consolidated to define the search string. Alternative terms are 
connected using OR Boolean operator to get a wide coverage. There are mainly two segments of 
the search statement. The first sub-segment is the union of all basic Big Data related terms, 
second sub-segment is the union of  Software Engineering keywords. The intersection of the 
first and second sub-segments constitutes the first  output for Big Data in Software Engineering 
research. The second segment addresses interdisciplinary terms. Consequently, the union of 
these two segments are applied an OR Boolean operator to get the union of the results. As a 
result, we generated the following search string: 

[("Data Mining" OR "Big Data" OR "Streaming data" OR "complex event processing" OR "CEP" 
OR "Statistical Methods" OR "Anomaly Detection" OR "Knowledge Discovery") AND ("Software 
Engineering" OR "SE" OR "SD" OR "Software Development"  OR "Software Implementation" OR 
"SDLC" OR "Software Development Life Cycle" OR "Requirements Engineering" OR "Software 
Design" OR "Software Architecture" OR "DevOps" OR "Continuous Delivery" OR "Continuous 
Integration" OR "Project Management" OR "Application Monitoring" OR "Software 
Measurement" OR "Software Size" OR "Software Metric" OR "Release Management" OR 
"Change Management" OR "Version Control" OR "Usability" OR "Software Usage" OR 
"Appplication Usage Monitoring" OR "HCI" OR "Human Computer Interaction" OR "Software 
Testing" OR "Test Automation" OR "Automated Test" OR "Unit Test" OR "Performance Test" OR 
"Stress Test" OR "Software Quality" OR "Incident Management" OR "Complaint Management" 
OR "Software Defect Prediction" OR "Software Log Mining" OR "Software Fault Detection" OR 
"Software Security" OR "Software Fraud detection"  OR "Transaction mining" OR "Software 
Integration" OR "Static Code Analysis" OR "Application Development Life Cycle Management" 
OR "ADLM")] OR ("Operational Intelligence" OR "Operational Analytics" OR "Software Analytics" 
OR "Software Archaeology" OR "Digital Archaeology ") 

 

2.3. Literature Resources 

We used Google Scholar as the primary resource for three reasons. First, English published 
study coverage of Google Scholar is very high (87 %) [8]. Second, the subject of the study is 
interdisciplinary and Google Scholar is a convenient platform to find the related research under 
study. Third, there’s an important disadvantage of other electronic databases. The search strings 
needed to be adapted to suit the specific requirements of the different databases. This may be a 
very time consuming task for the researchers. Google Scholar has some important issues as well 
[9]. Google Scholar has a 256 character limitation for the search string. If the length of the 
search string is above 256, it silently truncates the string without warning [9]. To overcome this 
limitation we constituted 17 shorter subqueries from the original search string.  

Our search covers the time frame from January 2010 to November 2015. We aimed to cover 
relevant papers in the recent past. We also added another filter on the content search. We 
conducted the search by using “allintitle” keyword to limit the keyword search within paper 
titles. In this manner we aimed to increase relevancy.  



Bagriyanik, S. & Karahoca, A. (2016). Big data in software engineering: A systematic literature review. Global Journal of Information 
Technology. 6(1), 107-116 

  
 

 110 

2.4. Study Selection Process 

We obtained 326 studies by executing our 17 search strings. In the first filtration phase, we 
made a quick scan of the abstracts of all the resulting papers and made elimination based on the 
following inclusion and exclusion criteria: 

 
Inclusion Criteria: 

 Paper must contain big data studies in software engineering domain 

 Studies reviewed in peer reviewed workshop OR conference OR journal OR are reported in a 
technical report OR Msc/Phd thesis 
 

Exclusion Criteria: 

 Studies not in English  

 Study is a book chapter 
 

After the first filtration, 112 papers remained for the second phase.  In the second phase 
remaining 112 papers’ full content were scanned and assessed according to the quality criterias 
given in the next section. 32 papers with highest quality assessment scores were selected. These 
papers are given in reference section in sequence [10–41].  

 

2.5. Study Quality Assessment 

We specified following quality assessment criteria in order to determine the final output of 
the survey which are the 32 papers cited in section 2.4. Each criteria is 5 points. Thus the 
possible maximum score is 20 and minimum score is 0. 

 Criteria 1: Study contribution is clearly described. 
 Criteria 2: Artefacts and methods used in the study are clearly described. 
 Criteria 3: Empirical validation is performed. 
 Criteria 4: The results and applications are described and discussed thorougly. 

 
Each candidate paper was given a score using the assesment. The highest score was 17 and the 
lowest score was 5. All primary studies scored above 12 points were selected. 
 

2.6. Data Extraction and Data Synthesis 

To reach the data needed to answer our research questions and constitute some additional 
statistical data, we extracted following data from the papers: Title, Quality Criteria 1 Score, 
Quality Criteria 2 Score, Quality Criteria 3 Score, Quality Criteria 4 Score, Overall Quality Score, 
Year of Publication, Type, Country, SE Sub Domain, Artefacts, Objective, Data Processing 
Algorithms, Batch/Streaming, Tool/Technology. Next, extracted data is synthesized using 
graphics and tables which are presented in the following section. 

 

3. Data Results 

In this section, answers for the two research questions defined in section 2.1 will be 
discussed. Some other statistical data extracted from the papers remained after first filtration 
and second filtration (selected final primary studies) will be presented as well.  
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3.1. Research Question 1 

The question was “In which software engineering areas Big Data and Software Engineering 
are interacting and to what extent?”  To answer this question, we classified the papers based 
on the software engineering phases or keywords they focus in the data extraction phase. In 
Figure 2, the numbers of studies for each phase are shown.  For the 112 papers remained after 
first filtration (Blue bars), the most popular six areas in which big data research is active are 
Software Quality, Development, Test, Project Management, Human Computer Interaction and 
Operational Intelligence. The picture for the selected primary studies (Red bars) is partially 
different. Software Quality, Development, Project Management and Human Computer 
Interaction are still in the top six list. However two new domains appear in the list: Software 
Evolution and Software Visualisation. Primary studies for Operational Intelligence and Test areas 
have a sharp decline. Deployment, Requirements Engineering, Release Management and Mobile 
Applications are the domains that have nearly no studies in both paper sets. 

 

 
 

Figure 1 Distribution of Studies per Year for First (Left) and Second (Right) Filtration  
 

3.2. Research Question 2 

The question was “Which software engineering artefacts are used for Big Data processing? 
What are the most frequently used artefacts?” To answer this question, we also classified the 
papers based on the software engineering artefacts they use. In Figure 3, the numbers of studies 
for each artefact are shown. Source code and source code changes, bug related data and 
operational data are the most used artefacts in both papers set. The usage of all the other 
artefact types are not significant. Average Artefact number per paper is 1.16 in the paper set 
after first filtration. The average is 1.06 for the second paper set. This implies that majority of 
the papers focus on the problems using a single artefact. This finding is also consistent with the 
Figure 7. That is, majority of the papers lack a holistic perspective. More studies are required to 
correlate several software engineering artefacts to support high level decision making. 
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Figure 2 Distribution of Studies per Keywords for First (Blue) and Second (Red) Filtration 
 

3.3. Additional Statistics 

The trend of the number of the papers in the last six years is shown in Figure 1. For the first 
paper set,  

 

 
Figure 3 Distribution of Studies per Artefacts for First (Blue) and Second (Red) Filtration 

 
there is a regular increase beginning from 2012. However there is no regular increase pattern 
for the selected primary studies even though 2015 has the maximum number of studies. Figure 
4 presents the paper type distribution. Conference and journal papers are the majority of the 
publications and conference papers are slightly more than journal studies. In Figure 5 and Figure 
6, paper numbers by  
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Figure 4 Distribution of Studies per Type for First (Left) and Second (Right) Filtration 
 

Countries are given. USA, India and China seem to dominate the publications for the first set. 
However for the selected studies, USA is leading the way by itself. 
 

 
 

Figure 5 Distribution of Studies by Country for the First Filtration 
 

 
Figure 6 Distribution of Studies by Country for the 2

nd
  Filtration 
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Figure 7 Distribution of Studies per Type for First (Left) and Second (Right) Filtration 

4. Conclusions 

In this study, we investigated the current state of the research in Big Data and Software 
Engineering by using the systematic literature review methodology.  We selected the primary 
studies extracting 326 relevant studies published in last six years (2010-2015). In the first 
filtration, we eliminated about % 66 of the extracted studies using inclusion and exclusion 
criterias. 32 primary studies with highest quality assessment scores were selected out of 112 
papers.  

The conducted primary studies in the literature are scarce. However some areas are studied 
relatively more. Software Quality, Development, Project Management, Human Computer 
Interaction, Software Evolution and Software Visualisation are the most active research topics in 
software engineering big data studies. Source code and source code changes, bug related data 
and operational data are the most used artefacts in the studies. Deployment, Requirements 
Engineering, Release Management and Mobile Applications are the areas that have less studies. 
Studies lack a holistic perspective in terms of used artefacts. More studies are required to 
correlate several software engineering artefacts to support efficient decision making in large 
and complex enterprises. 
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