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Abstract 
 

The article is dedicated to the optimization of credit risk through the application of Conditional Value at Risk (CVaR). CVaR is a 
risk measure, the expected loss exceeding Value-at-Risk and is also known as Mean Excess, Mean Shortfall, or Tail VaR. The 
link between credit risk and the current financial crisis accentuates the importance of measuring and predicting extreme 
credit risk. Conditional Value at Risk has become an increasingly popular method for measurement and optimization of 
extreme market risk. The use of model can regulate all positions in a portfolio of financial instruments in order to minimize 
CVaR subject to trading and return constraints at the same time. The credit risk distribution is created by Monte Carlo 
simulations and the optimization problem is solved effectively by linear programming. We apply these CVaR techniques to 
the optimization of credit risk on portfolio of selected bonds. 
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1. Introduction 

Risk management is a broad concept involving various perspectives. From mathematical 
perspective it is a procedure for shaping a loss distribution. On the other side it is a core activity of 
banks, investment companies, financial institutions and similar institutions in process of asset 
allocation. Credit risk is a risk of loss of principal or loss of a financial reward stemming from a 
borrower's failure to repay a loan or otherwise meet a contractual obligation. Traditionally used tools 
for assessing and optimizing market risk assume that the portfolio return-loss is normally distributed 
described by mean and standard deviation. This approach has shown up to be quite useful, but it is 
inadequate for evaluation of credit risk (Kollar, Valaskova & Kramarova, 2015; Valaskova, Gavlakova & 
Dengov, 2014). 

Value at Risk (VaR) has become an increasingly popular method for measuring market risk. VaR 
measures potential losses over a specific time period within a given confidence level. The concept of 
VaR is widely used and well understood. Its popularity increased when it was integrated into the Basel 
Treaty as a required measurement for the determination of capital adequacy for market risk. VaR has 
also been applied to credit risk through models such as CreditMetrics (Gupton, Finger, & Bhatia, 1997), 
CreditPortfolioView (Wilson, 1997), and iTransition (Allen & Powell, 2008) (Kollar & Bartosova, 2014). 

However, in spite of its popularity, VaR has also some undesirable mathematical properties, such as 
lack of sub-additivity and convexity. In the case of the standard normal distribution VaR is proportional 
to the standard deviation. The VaR resulting from the combination of two portfolios can be greater 
than the sum of the risks of the individual portfolios. (Kliestik, Musa Frajtova-Michalikova, 2015) A 
further complication is associated with the fact that VaR is difficult to optimize when calculated from 
scenarios. It can be difficult to resolve as a function of a portfolio position and can exhibit multiple 
local extreme, which makes it problematic to determine the optimal mix of positions and the VaR of a 
particular mix (Anderson, Uryasev, Mausser & Rosen, 2000; Kral, Kliestik, 2015). 

Conditional Value at Risk was introduced by Rockafellar and Uryasev (2002) represents an 
alternative method to VaR for measuring market and credit risk. This measure is also called Expected 
Tail Loss, Mean Excess Loss, Mean Shortfall or Tail Var. CVaR approximately equals the average of 
some percentage of the worst – case loss scenarios (Grublova, 2010). VaR is heavily used in various 
engineering applications, including financial ones. VaR risk constraints are equivalent to the so-called 
chance constraints on probabilities of losses. There is a close correspondence between CVaR and VaR: 
with the same confidence level, VaR is a lower bound for CVaR. Rockafellar and Uryasev (2002) also 
showed that CVaR is superior to VaR in optimization applications. The problem of the choice between 
VaR and CVaR, especially in financial risk management, has been quite popular in academic literature 
(Frajtova-Michalikova, Kliestik & Musa, 2015). Reasons affecting the choice between VaR and CVaR are 
based on the differences in mathematical properties, stability of statistical estimation, simplicity of 
optimization procedures, acceptance by regulators, etc. Conclusions made from this properties may 
often be quite contradictive (Gavlakova, Kliestik, 2014; Buc, Kliestik, 2013). 

2. Methodology  

2.1. Basic model 

Conditional Value at Risk is an alternative percentile measure of risk and its interpretation is the 
expected loss given that the loss exceeds the VaR. It is more informative risk metrics than VaR, 
because VaR does not measure the extent of exceptional losses. VaR merely states a level of loss that 
we are reasonably sure will not be exceeded: it tells us nothing about how much could be lost if VaR is 
exceeded. Based on these CVaR shows how much we expect to lose, given that the VaR is exceeded 
(Alexander, 2014; Dengov, Gregova, 2010). 

http://www.prosoc.eu/


Misankova, M. & Spuchlakova, E. (2017). Application of conditional value at risk for credit risk optimization. New Trends and Issues 
Proceedings on Humanities and Social Sciences. [Online]. 04, pp 146-152. Available from: www.prosoc.eu 

 148 

For random variables with continuous distribution functions, CVARα(X) equals the conditional 
expectation of X subject to X ≥ VaRα(X). This is the basis for definition of CVaR. The general definition 
of CVaR for random variables with a possibly discontinuous distribution function is:  

CVaR of X with confidence level α ϵ [0,1] is the mean of the generalized α-tail distribution:  

 
       (1) 

 
where 
 
 

  (2) 
 
 
Generally CVARα(X) is not equal to an average of outcomes greater than VaRα(X). For general 

distributions, one may need to split a probability. So when the distribution is modeled by scenarios the 
CVaR may be obtained by averaging a fractional number of scenarios. (Yamai, Yoshiba, 2002)  

CVARα+(X) (upper CVaR): expected value of X strictly exceeding VaR (also called Mean Excess Loss 
and Expected Shortfall): 

 
(3) 

 
CVARα-(X) (lower CVaR): expected value for X weakly exceeding VaR (also called Tail Var): 

 
(4) 

 

 
Figure 1. Main relations between risk metrics (Uryasev, 2000) 
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Figure 1 represents connection between these measures while we can see that CVARα+(X) and 
VaRα(X) are discontinuous functions. CVaR is convex in X and continuous with respect to α. VaR, 
CVAR+, CVAR- may be non-convex. The main relations between them are:  

 
   VaR CVaR CVaR CVaR      (5) 

 
CVaR is considered a more consistent measure of risk than VaR. It supplements the information 

provided by VaR and calculates the quantity of the excess loss. While CVaR is greater than or equal to 
VaR, portfolios with a low CVaR also have a low VaR.  

The minimum CVaR approach is based on a new representation of the performance function that 
allows the simultaneous calculation of VaR and minimization of CVaR.   

3. Results and discussion 

3.1. Application of Conditional Value at Risk for credit risk optimization 

Application of Var for optimization of risk leads to a stretch of the tail of the distribution exceeding 
VaR. Though the minimization of VaR may lead to an increase in the extreme losses the purpose of it is 
to reduce extreme losses. Larsen, Mausser & Uryasev (2000) suggested two heuristic algorithms for 
optimization of VaR, which are based on the minimization of CVaR. They concluded that the 
minimization of Var leads to about 16% increase of the average loss for the worst 1% scenarios in 
comparison with the worst 1% scenarios in CVaR minimum solution. These results confirm theoretical 
results that CVaR is coherent while VaR is not coherent measure of risk. Results obtained by Larsen et 
al. (2000) are shown in the figure 2 and it is clear that how iteratively Var is decreasing than CVaR is 
increasing.  

 
Fig. 2. Main relations between risk metrics. (Larsen, et. al., 2000) 
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We constructed a portfolio of 10 bonds, which were modeled with 1000 scenarios and 
subsequently we solved two optimization problems. Firstly is minimized 99%-CVaR deviation of losses 
and secondly is minimized 99%-VaR deviation of losses.  

So the Problem 1 is: min    Problem 2: min   
 
 
       (5) 
 
 
where  x  is the vector of portfolio weights  
  ri is the rate of return of asset i 

  r  is the lower bound on estimated portfolio return  
 

Table 1. Conditional Value at Risk and Value at Risk functions 
 Min 

0,99CVaR  min 

0,99VaR  Ratio 

0,99CVaR  0,0064 0,0075 1,172 


0,99CVaR  0,0342 0,0358 1,047 

0,99VaR  0,0019 0,0012 0,632 


0,99VaR  0,0289 0,0234 0,810 
Max loss = 1CVaR  0,0124 0,0136 1,097 
Max loss deviation = 

1CVaR  0,0523 0,0542 1,036 

 

From the table 1 can be concluded that minimization of 99% - VaR deviation leads to 17,2% increase 
in 99%-CVaR in comparison with 99%- CVaR in the optimal deviation portfolio. So it is clear that 
minimization of CVaR leads to minimization of credit risk while application of CVaR is more 
appropriate for the portfolio than VaR.  

3.2. Discussion 

Based on the provided calculations can be summarized some brief conclusions such as CVaR has 
superior mathematical properties against VaR. Risk management with CVaR functions can be done 
quite efficiently. CVaR can be optimized and constrained with convex and linear programming 
methods, whereas VaR is relatively difficult to optimize VaR CVaR risk may be positive or negative, 
whereas CVaR deviation is always positive. Therefore, the Sharpe-like ratio (expected reward divided 
by risk measure) should involve CVaR deviation in the denominator rather than CVaR risk. CVaR of a 
portfolio is a continuous and convex function with respect to positions in instruments, whereas the 
VaR may be even a discontinuous function. Standard deviation can be replaced by a CVaR deviation. 
CVaR accounts for losses exceeding VaR, which can be good or bad: 

 CVaR provides an acceptable representation of risks reflected in extreme tails.  

 CVaR may have a relatively poor out-of-sample performance compared with VaR if tails are not 
modeled correctly. 

4. Conclusion  

The article was dedicated to the optimization of credit risk which was provided by the application of 
Conditional Value at Risk as a more appropriate risk measure in comparison with Value at Risk. There 
is a brief theoretical background introducing CVaR as a risk measure supplemented with comparison 
of CVaR and VaR. The main goal was to apply CVaR for the minimization of credit risk which was 
fulfilled by calculations provided on the portfolio of 10 selected bonds just to provide example 
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calculations. There is a clear connection between VaR and CVaR and also we have confirmed that 
application of CVaR can lead to significant minimization of credit risk.  
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