Introducing a software for innovative neuro-fuzzy clustering method named NFCMR
Main Article Content
Abstract
An innovative neural-fuzzy clustering method is for predicting cluster (anomaly / background) of each new sample with the probability of its presence. This method which is a combination of the Fuzzy C-Means clustering method (FCM) and the General Regression Neural Network (GRNN), is an attempt to first divide the samples in the region by fuzzy method with the probability of being in each cluster and then with the results of this Practice, the artificial neural network is trained, and can analyze the new data entered in the region with the probable percentage of the clusters. More clearly, after a full mineral exploration, the sample can be attributed to a certain probable percentage of anomalies. To test the accuracy of this clustering in the form of the theory alone, a case study was conducted on the results of the analysis of regional alluvial sediments data in Birjand, IRAN, which resulted in satisfactory results. This software is written in MATLAB and its first application in mining engineering. This algorithm can be used in other similar applications in various sciences.
Downloads
Article Details
Global Journal of Computer Sciences: Theory and Research is an Open Access Journal. All articles can be downloaded free of charge. Articles published in the Journal are Open-Access articles distributed under CC-BY license [Attribution 4.0 International (CC BY 4.0)]
Birlesik Dunya Yenilik Arastirma ve Yayincilik Merkezi (BD-Center) is a gold open access publisher. At the point of publication, all articles from our portfolio of journals are immediately and permanently accessible online free of charge. BD-Center articles are published under the CC-BY license [Attribution 4.0 International (CC BY 4.0)], which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and the source are credited.