Associative classification of the Jordanian hospitals efficiency based on DEA
Main Article Content
Abstract
Data envelopment analysis (DEA) has been widely used in many fields. Recently, it has been adopted by the healthcare sector to improve efficiency and performance of the healthcare organisations, and thus, reducing overall costs and increasing productivity. In this paper, we demonstrate the results of applying the DEA model in Jordanian hospitals. The dataset consists of 28 hospitals and is classified into two groups: efficient and non-efficient hospitals. We applied different association classification data mining techniques (JCBA, WeightedClassifier and J48) to generate strong rules using the Waikato Environment for Knowledge Analysis. We also applied the open source DEA software and MaxDEA software to manipulate the DEA model. The results showed that JCBA has the highest accuracy. However, WeightedClassifier method achieves the highest number of generated rules, while the JCBA method has the minimum number of generated rules. The results have several implications for practice in the healthcare sector and decision makers.
Keywords: Component, DEA, DMU, output-oriented model, health care system.
Downloads
Article Details
Global Journal of Computer Sciences: Theory and Research is an Open Access Journal. All articles can be downloaded free of charge. Articles published in the Journal are Open-Access articles distributed under CC-BY license [Attribution 4.0 International (CC BY 4.0)]
Birlesik Dunya Yenilik Arastirma ve Yayincilik Merkezi (BD-Center) is a gold open access publisher. At the point of publication, all articles from our portfolio of journals are immediately and permanently accessible online free of charge. BD-Center articles are published under the CC-BY license [Attribution 4.0 International (CC BY 4.0)], which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and the source are credited.