A new strategy for curriculum learning using model distillation
Main Article Content
Abstract
In recent years, deep neural networks have been successful in both industry and academia, especially for computer vision tasks. Humans and animals learn much better when gradually presented in a meaningful order showing more concepts and complex samples rather than randomly presenting the information. The use of such training strategies in the context of artificial neural networks is called curriculum learning. In this study, a strategy was developed for curriculum learning. Using the CIFAR-10 and CIFAR-100 training sets, the last few layers of the pre-trained on ImageNet Xception model were trained to keep the training set knowledge in the model’s weight. Finally, a much smaller model was trained with the sample sorting methods presented using these difficulty levels. The findings obtained in this study show that the accuracy value generated when trained by the method we provided with the accuracy value trained with randomly mixed data was more than 1% for each epoch.
Keywords: Curriculum learning, model distillation, deep learning, academia, neural networks.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Global Journal of Computer Sciences: Theory and Research is an Open Access Journal. All articles can be downloaded free of charge. Articles published in the Journal are Open-Access articles distributed under CC-BY license [Attribution 4.0 International (CC BY 4.0)]
Birlesik Dunya Yenilik Arastirma ve Yayincilik Merkezi (BD-Center) is a gold open access publisher. At the point of publication, all articles from our portfolio of journals are immediately and permanently accessible online free of charge. BD-Center articles are published under the CC-BY license [Attribution 4.0 International (CC BY 4.0)], which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and the source are credited.