An approach to obtain the generalized mixed linear stress function for known owa weights with artificial bee colony algorithm
Main Article Content
Abstract
Abstract
OWA (Ordered Weighted Averaging) is a flexible aggregation operator which is come up with Yager to create a decision function in multi-criteria decision making. It is possible to determine how optimistic or pessimistic the decision maker's opinion with the value obtained from the weights of this operator. The determination of OWA weights cannot provide characterization by itself. If it is desired to aggregate various sized objects in terms of generalization and reusability of OWA weights, a more general form is needed. In this study, we propose the parameterized piecewise linear stress function and the approach to characterize OWA weights. The stress function is expressed by parameters which are obtained by artificial bee colony algorithm. Also the weights are approximately found by using parameters.
Keywords – OWA operator, aggregation, artificial bee colony algorithm.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).