Microwave energy-based synthesis and characterisation of hollow carbon nanospheres decorated with carbon nanotubes or metal oxide nanowires
Main Article Content
Abstract
Hollow carbon nanospheres (HCNSs), with either carbon nanotube (CNT) or metal oxide nanowire (MONW) decoration on their surface, were synthesised as building materials with a great potential for the next generation advanced applications. A well-established, polymeric latex NS synthesis method and a simply modified version of a microwave (MW) energy-based carbonisation approach, i.e. Poptube, were systematically combined to obtain these HCNSs. Through this simple, facile, affordable and easily scalable ‘combined synthesis method’, it was managed to successfully produce HCNSs with an unique morphological, spectroscopic, thermal and elemental features, all of which were strongly supported by both various material characterisation test results and the relevant previous literature data. Thus, it is believed that the as-synthesised CNT or MONW decorated HCNSs (CNT–MONW/HCNS) from the above-mentioned method would soon become the materials of preference for the next generation advanced applications in various science and engineering fields.
Keywords: Hollow carbon nanospheres, carbon nanotubes, metal oxide nanowires, microwave energy, conducting polymer.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).