On the size-dependent vibration of the embedded double-walled carbon nanotube conveying fluid using shell model
Main Article Content
Abstract
In this paper, the vibration and instability of double-walled carbon nanotube (DWCNT) conveying fluid were investigated by using the modified strain gradient theory. The Donnell's shell theory was used by taking into consideration the three size effects and simply-supported boundary conditions. The effect of van der Waals force between the two intended walls and the surroundings of the DWCNT was modelled as visco-Pasternak foundation. The governing equations of the problem and boundary conditions were derived from Hamilton’s principle. Also, Navier procedure was used to solve the vibration problem. To verify the results, a comparison was drawn between the results of this study and those of the references. According to the findings, the effects of fluid velocity, stiffness and damping of visco-Pasternak foundation, length of DWCNT and size effect are more considerable in the modified strain gradient theory than in the modified couple stress theory and classical theory.
Keywords: Modified strain gradient theory, Donnell’s shell theory, DWCNT, size effect, shell vibration.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).