Training of ANFIS with simulated annealing algorithm on flexural buckling load prediction of aluminium alloy columns
Main Article Content
Abstract
In this study, we propose a simulated annealing algorithm (SA) to train an adaptive neurofuzzy inference system (ANFIS). We performed different types of optimization algorithms such as genetic algorithm (GA), SA and artificial bee colony algorithm on two different problem types. Then, we measured the performance of these algorithms. First, we applied optimization algorithms on eight numerical benchmark functions which are sphere, axis parallel hyper-ellipsoid, Rosenbrock, Rastrigin, Schwefel, Griewank, sum of different powers and Ackley functions. After that, the training of ANFIS is carried out by mentioned optimization algorithms to predict the strength of heat-treated fine-drawn aluminium composite columns defeated by flexural bending. In summary, the accuracy of the proposed soft computing model was compared with the accuracy of the results of existing methods in the literature. It is seen that the training of ANFIS with the SA has more accuracy.
Keywords: Soft computing, ANFIS, simulated annealing, flexural buckling, aluminium alloy columns.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).