Optimisation of scheduled tasks by real-time measurement and correlation
Main Article Content
Abstract
For functional safety, the scheduler should perform all time critical tasks in an order and within predefined deadlines in embedded systems. Scheduling of time critical tasks is determined by estimating their worst-case execution times. To justify the model design of task scheduling, it is required to simulate and visualise the task execution and scheduling maps. This helps to figure out possible problems before deploying the schedule model to real hardware. The simulation tools which are used by companies in an industry perform scheduling simulation and visualisation of all time critical tasks to design and verify the model. All of them lack the capability of comparing simulation results versus real results to achieve the optimised scheduling design. This sometimes leads the overestimated worst-case execution times and increased system cost. The aim of our study is to decrease the system cost with optimisation of scheduled tasks via using the static analysing method.
Keywords: Schedule visualisation, scheduler optimisation, functional safety, real-time systems, scheduler.
Downloads
Article Details
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).