Classification of brain tumours using radiomic features on MRI
Main Article Content
Abstract
Glioma is one of the most common brain tumours among the diagnoses of existing brain tumours. Glioma grades are important factors that should be known in the treatment of brain tumours. In this study, the radiomic features of gliomas were analysed and glioma grades were classified by Gaussian Naive Bayes algorithm. Glioma tumours of 121 patients of Grade II and Grade III were examined. The glioma tumours were segmented with the Grow Cut Algorithm and the 3D feature of tumour magnetic resonance imaging images were obtained with the 3D Slicer programme. The obtained quantitative values were statistically analysed with Spearman and Mann–Whitney U tests and 21 features with statistically significant properties were selected from 107 features. The results showed that the best performing among the algorithms was Gaussian Naive Bayes algorithm with 80% accuracy. Machine learning and feature selection techniques can be used in the analysis of gliomas as well as pathological evaluations in glioma grading processes.
Keywords: Radiomics, glioma, naive bayes.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).